零和神经符号并发随机博弈的策略合成

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Rui Yan , Gabriel Santos , Gethin Norman , David Parker , Marta Kwiatkowska
{"title":"零和神经符号并发随机博弈的策略合成","authors":"Rui Yan ,&nbsp;Gabriel Santos ,&nbsp;Gethin Norman ,&nbsp;David Parker ,&nbsp;Marta Kwiatkowska","doi":"10.1016/j.ic.2024.105193","DOIUrl":null,"url":null,"abstract":"<div><p>Neuro-symbolic approaches to artificial intelligence, which combine neural networks with classical symbolic techniques, are growing in prominence, necessitating formal approaches to reason about their correctness. We propose a novel modelling formalism called neuro-symbolic concurrent stochastic games (NS-CSGs), which comprise two probabilistic finite-state agents interacting in a shared continuous-state environment. Each agent observes the environment using a neural perception mechanism, which converts inputs such as images into symbolic percepts, and makes decisions symbolically. We focus on the class of NS-CSGs with Borel state spaces and prove the existence and measurability of the value function for zero-sum discounted cumulative rewards under piecewise-constant restrictions. To compute values and synthesise strategies, we first introduce a Borel measurable piecewise-constant (B-PWC) representation of value functions and propose a B-PWC value iteration. Second, we introduce two novel representations for the value functions and strategies, and propose a minimax-action-free policy iteration based on alternating player choices.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"300 ","pages":"Article 105193"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890540124000580/pdfft?md5=324958787cd624f11d92ad65e9802849&pid=1-s2.0-S0890540124000580-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Strategy synthesis for zero-sum neuro-symbolic concurrent stochastic games\",\"authors\":\"Rui Yan ,&nbsp;Gabriel Santos ,&nbsp;Gethin Norman ,&nbsp;David Parker ,&nbsp;Marta Kwiatkowska\",\"doi\":\"10.1016/j.ic.2024.105193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neuro-symbolic approaches to artificial intelligence, which combine neural networks with classical symbolic techniques, are growing in prominence, necessitating formal approaches to reason about their correctness. We propose a novel modelling formalism called neuro-symbolic concurrent stochastic games (NS-CSGs), which comprise two probabilistic finite-state agents interacting in a shared continuous-state environment. Each agent observes the environment using a neural perception mechanism, which converts inputs such as images into symbolic percepts, and makes decisions symbolically. We focus on the class of NS-CSGs with Borel state spaces and prove the existence and measurability of the value function for zero-sum discounted cumulative rewards under piecewise-constant restrictions. To compute values and synthesise strategies, we first introduce a Borel measurable piecewise-constant (B-PWC) representation of value functions and propose a B-PWC value iteration. Second, we introduce two novel representations for the value functions and strategies, and propose a minimax-action-free policy iteration based on alternating player choices.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"300 \",\"pages\":\"Article 105193\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000580/pdfft?md5=324958787cd624f11d92ad65e9802849&pid=1-s2.0-S0890540124000580-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000580\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000580","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

将神经网络与经典符号技术相结合的神经符号人工智能方法日益突出,这就需要采用正规方法来推理其正确性。我们提出了一种名为神经符号并发随机博弈(NS-CSGs)的新型建模形式,它由两个在共享连续状态环境中相互作用的概率有限状态代理组成。每个代理使用神经感知机制观察环境,将输入(如图像)转换为符号感知,并以符号方式做出决策。我们将重点放在具有 Borel 状态空间的 NS-CSGs 类别上,并证明了零和贴现累积奖励的价值函数在片断常数限制下的存在性和可测性。为了计算值和综合策略,我们首先介绍了值函数的伯尔可测片断常数(B-PWC)表示法,并提出了一种 B-PWC 值迭代法。其次,我们为价值函数和策略引入了两种新的表示法,并提出了一种基于玩家交替选择的无最小行动策略迭代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategy synthesis for zero-sum neuro-symbolic concurrent stochastic games

Neuro-symbolic approaches to artificial intelligence, which combine neural networks with classical symbolic techniques, are growing in prominence, necessitating formal approaches to reason about their correctness. We propose a novel modelling formalism called neuro-symbolic concurrent stochastic games (NS-CSGs), which comprise two probabilistic finite-state agents interacting in a shared continuous-state environment. Each agent observes the environment using a neural perception mechanism, which converts inputs such as images into symbolic percepts, and makes decisions symbolically. We focus on the class of NS-CSGs with Borel state spaces and prove the existence and measurability of the value function for zero-sum discounted cumulative rewards under piecewise-constant restrictions. To compute values and synthesise strategies, we first introduce a Borel measurable piecewise-constant (B-PWC) representation of value functions and propose a B-PWC value iteration. Second, we introduce two novel representations for the value functions and strategies, and propose a minimax-action-free policy iteration based on alternating player choices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信