双四元赫米矩阵的摩尔行列式

IF 2.6 3区 数学
Chunfeng Cui, Liqun Qi, Guangjing Song, Qing-Wen Wang
{"title":"双四元赫米矩阵的摩尔行列式","authors":"Chunfeng Cui, Liqun Qi, Guangjing Song, Qing-Wen Wang","doi":"10.1007/s40314-024-02884-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we extend the Chen and Moore determinants of quaternion Hermitian matrices to dual quaternion Hermitian matrices. We show the Chen determinant of dual quaternion Hermitian matrices is invariant under addition, switching, multiplication, and unitary operations at the both hand sides. We then show the Chen and Moore determinants of dual quaternion Hermitian matrices are equal to each other, and they are also equal to the products of eigenvalues. The characteristic polynomial of a dual quaternion Hermitian matrix is also studied.\n</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"24 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moore determinant of dual quaternion Hermitian matrices\",\"authors\":\"Chunfeng Cui, Liqun Qi, Guangjing Song, Qing-Wen Wang\",\"doi\":\"10.1007/s40314-024-02884-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we extend the Chen and Moore determinants of quaternion Hermitian matrices to dual quaternion Hermitian matrices. We show the Chen determinant of dual quaternion Hermitian matrices is invariant under addition, switching, multiplication, and unitary operations at the both hand sides. We then show the Chen and Moore determinants of dual quaternion Hermitian matrices are equal to each other, and they are also equal to the products of eigenvalues. The characteristic polynomial of a dual quaternion Hermitian matrix is also studied.\\n</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02884-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02884-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将四元赫米矩阵的陈行列式和摩尔行列式扩展到对偶四元赫米矩阵。我们证明了对偶四元赫米矩阵的 Chen 行列式在两边进行加法、交换、乘法和单元运算时是不变的。然后,我们证明了对偶四元数赫米矩阵的陈行列式和摩尔行列式彼此相等,它们也等于特征值的乘积。我们还研究了对偶四元赫米矩阵的特征多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moore determinant of dual quaternion Hermitian matrices

In this paper, we extend the Chen and Moore determinants of quaternion Hermitian matrices to dual quaternion Hermitian matrices. We show the Chen determinant of dual quaternion Hermitian matrices is invariant under addition, switching, multiplication, and unitary operations at the both hand sides. We then show the Chen and Moore determinants of dual quaternion Hermitian matrices are equal to each other, and they are also equal to the products of eigenvalues. The characteristic polynomial of a dual quaternion Hermitian matrix is also studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信