非线性扩展渔-科尔莫哥罗夫方程的全伽勒金近似的误差分析

IF 2.6 3区 数学
Kaouther Ismail, Ankur, Khaled Omrani
{"title":"非线性扩展渔-科尔莫哥罗夫方程的全伽勒金近似的误差分析","authors":"Kaouther Ismail, Ankur, Khaled Omrani","doi":"10.1007/s40314-024-02827-y","DOIUrl":null,"url":null,"abstract":"<p>In this article, we present a fully discrete Crank–Nicolson Galerkin finite element method for solving the two-dimensional nonlinear extended-Fisher–Kolmogorov equation: <span>\\(u_t + \\gamma \\Delta ^2 u -\\Delta u -u +u^{3} = 0.\\)</span> The boundedness of the numerical solution in the maximum norm, unique solvability, and related convergence results in <span>\\(L^2\\)</span> and <span>\\(L^{\\infty }\\)</span>-norms are studied in detail. Also, a new linearized Crank–Nicolson Galerkin modification scheme is designed and error estimate without any time step restrictions is established. Finally, some computational experiments in one and two dimension cases are provided to illustrate the efficacy of our method and to confirm the theoretical results.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"77 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error analysis of the fully Galerkin approximations for the nonlinear extended-Fisher–Kolmogorov equation\",\"authors\":\"Kaouther Ismail, Ankur, Khaled Omrani\",\"doi\":\"10.1007/s40314-024-02827-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we present a fully discrete Crank–Nicolson Galerkin finite element method for solving the two-dimensional nonlinear extended-Fisher–Kolmogorov equation: <span>\\\\(u_t + \\\\gamma \\\\Delta ^2 u -\\\\Delta u -u +u^{3} = 0.\\\\)</span> The boundedness of the numerical solution in the maximum norm, unique solvability, and related convergence results in <span>\\\\(L^2\\\\)</span> and <span>\\\\(L^{\\\\infty }\\\\)</span>-norms are studied in detail. Also, a new linearized Crank–Nicolson Galerkin modification scheme is designed and error estimate without any time step restrictions is established. Finally, some computational experiments in one and two dimension cases are provided to illustrate the efficacy of our method and to confirm the theoretical results.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02827-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02827-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种完全离散的 Crank-Nicolson Galerkin 有限元方法,用于求解二维非线性扩展渔-科尔莫哥罗夫方程:\(u_t + \gamma \Delta ^2 u -\Delta u -u +u^{3} = 0.\) 详细研究了数值解在最大规范中的有界性、唯一可解性以及在 \(L^2\) 和 \(L^{\infty })规范中的相关收敛结果。此外,还设计了一种新的线性化 Crank-Nicolson Galerkin 修正方案,并建立了不受任何时间步长限制的误差估计。最后,提供了一些一维和二维情况下的计算实验,以说明我们方法的有效性并证实理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Error analysis of the fully Galerkin approximations for the nonlinear extended-Fisher–Kolmogorov equation

Error analysis of the fully Galerkin approximations for the nonlinear extended-Fisher–Kolmogorov equation

In this article, we present a fully discrete Crank–Nicolson Galerkin finite element method for solving the two-dimensional nonlinear extended-Fisher–Kolmogorov equation: \(u_t + \gamma \Delta ^2 u -\Delta u -u +u^{3} = 0.\) The boundedness of the numerical solution in the maximum norm, unique solvability, and related convergence results in \(L^2\) and \(L^{\infty }\)-norms are studied in detail. Also, a new linearized Crank–Nicolson Galerkin modification scheme is designed and error estimate without any time step restrictions is established. Finally, some computational experiments in one and two dimension cases are provided to illustrate the efficacy of our method and to confirm the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信