解决奇异扰动两点边界值问题的数值技术

IF 2.6 3区 数学
Pramod Chakravarthy Podila, Rahul Mishra, Higinio Ramos
{"title":"解决奇异扰动两点边界值问题的数值技术","authors":"Pramod Chakravarthy Podila, Rahul Mishra, Higinio Ramos","doi":"10.1007/s40314-024-02880-7","DOIUrl":null,"url":null,"abstract":"<p>In this article, we first convert a second order singularly perturbed boundary value problem (SPBVP) into a pair of initial value problems, which are solved later using exponential time differencing (ETD) Runge–Kutta methods. The stability analysis of the proposed scheme is addressed. Some linear and non-linear problems have been solved to study the applicability of the proposed method.\n</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"3 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical technique for solving singularly perturbed two-point boundary value problems\",\"authors\":\"Pramod Chakravarthy Podila, Rahul Mishra, Higinio Ramos\",\"doi\":\"10.1007/s40314-024-02880-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we first convert a second order singularly perturbed boundary value problem (SPBVP) into a pair of initial value problems, which are solved later using exponential time differencing (ETD) Runge–Kutta methods. The stability analysis of the proposed scheme is addressed. Some linear and non-linear problems have been solved to study the applicability of the proposed method.\\n</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02880-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02880-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先将二阶奇异扰动边界值问题(SPBVP)转换为一对初值问题,然后使用指数时差(ETD)Runge-Kutta 方法求解这对问题。对所提方案进行了稳定性分析。还解决了一些线性和非线性问题,以研究拟议方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A numerical technique for solving singularly perturbed two-point boundary value problems

A numerical technique for solving singularly perturbed two-point boundary value problems

In this article, we first convert a second order singularly perturbed boundary value problem (SPBVP) into a pair of initial value problems, which are solved later using exponential time differencing (ETD) Runge–Kutta methods. The stability analysis of the proposed scheme is addressed. Some linear and non-linear problems have been solved to study the applicability of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信