{"title":"非均匀临界电流密度对块状超导体磁弹性行为的影响:长圆柱形超导体的案例","authors":"Yumei Yang , Peng Cheng , Rui Mao , Haijun Lou","doi":"10.1016/j.physc.2024.1354580","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the effect of non-uniform critical current density on bulk superconductors is studied, the case of a long cylindrical superconductor with transport current is chose to discussed. The critical current density is distributed non-uniformly along the radius of the cylinder. Based on the Bean critical state model, the distributions of trapped magnetic flux and shielding current in the cylinder are investigated. Combined with the plane strain approach, the analytical expressions of magnetic flux pinning force and stress are obtained. The magnetostriction of the cylinder is also discussed. Results show that the non-uniform critical current density changes the distribution law of the shielding current and trapped magnetic flux in the cylinder. The increase of non-uniform parameters <em>n</em> leads to an obvious increase in the flux pinning force. Thus, a larger extreme value of the pinning stress is obtained, a bigger structure deformation is produced inside the superconducting cylinder. All those conclusions will provide a helpful guide for engineering application.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"624 ","pages":"Article 1354580"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of the non-uniform critical current density on the magnetoelastic behavior of bulk superconductors: Case of a long cylindrical superconductor\",\"authors\":\"Yumei Yang , Peng Cheng , Rui Mao , Haijun Lou\",\"doi\":\"10.1016/j.physc.2024.1354580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the effect of non-uniform critical current density on bulk superconductors is studied, the case of a long cylindrical superconductor with transport current is chose to discussed. The critical current density is distributed non-uniformly along the radius of the cylinder. Based on the Bean critical state model, the distributions of trapped magnetic flux and shielding current in the cylinder are investigated. Combined with the plane strain approach, the analytical expressions of magnetic flux pinning force and stress are obtained. The magnetostriction of the cylinder is also discussed. Results show that the non-uniform critical current density changes the distribution law of the shielding current and trapped magnetic flux in the cylinder. The increase of non-uniform parameters <em>n</em> leads to an obvious increase in the flux pinning force. Thus, a larger extreme value of the pinning stress is obtained, a bigger structure deformation is produced inside the superconducting cylinder. All those conclusions will provide a helpful guide for engineering application.</p></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":\"624 \",\"pages\":\"Article 1354580\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453424001448\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424001448","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
The effect of the non-uniform critical current density on the magnetoelastic behavior of bulk superconductors: Case of a long cylindrical superconductor
In this paper, the effect of non-uniform critical current density on bulk superconductors is studied, the case of a long cylindrical superconductor with transport current is chose to discussed. The critical current density is distributed non-uniformly along the radius of the cylinder. Based on the Bean critical state model, the distributions of trapped magnetic flux and shielding current in the cylinder are investigated. Combined with the plane strain approach, the analytical expressions of magnetic flux pinning force and stress are obtained. The magnetostriction of the cylinder is also discussed. Results show that the non-uniform critical current density changes the distribution law of the shielding current and trapped magnetic flux in the cylinder. The increase of non-uniform parameters n leads to an obvious increase in the flux pinning force. Thus, a larger extreme value of the pinning stress is obtained, a bigger structure deformation is produced inside the superconducting cylinder. All those conclusions will provide a helpful guide for engineering application.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.