{"title":"其点稳定子为具有循环弗罗贝尼斯核的弗罗贝尼斯群的尖顶置换群","authors":"Blake Norman","doi":"10.1080/00927872.2024.2377806","DOIUrl":null,"url":null,"abstract":"Let (G,X) be a transitive non-geometric sharp permutation group of type {0,k} and let x∈X. We prove that if the point stabilizer Gx is a Frobenius group with cyclic Frobenius kernel, then Gx≅AGL(1,...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp permutation groups whose point stabilizers are Frobenius groups with cyclic Frobenius kernel\",\"authors\":\"Blake Norman\",\"doi\":\"10.1080/00927872.2024.2377806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (G,X) be a transitive non-geometric sharp permutation group of type {0,k} and let x∈X. We prove that if the point stabilizer Gx is a Frobenius group with cyclic Frobenius kernel, then Gx≅AGL(1,...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00927872.2024.2377806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00927872.2024.2377806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sharp permutation groups whose point stabilizers are Frobenius groups with cyclic Frobenius kernel
Let (G,X) be a transitive non-geometric sharp permutation group of type {0,k} and let x∈X. We prove that if the point stabilizer Gx is a Frobenius group with cyclic Frobenius kernel, then Gx≅AGL(1,...