{"title":"非平方线性李代数 gl(m×n, 𝔽) 的派生和双派生","authors":"Hongjin Liu, Zhengxin Chen","doi":"10.1080/00927872.2024.2381814","DOIUrl":null,"url":null,"abstract":"Let m, n be integers with m>n . Denote Mm,n by the set of all m×n matrices over the field F of characteristic zero. Let I be an n×m matrix with (i,i) -position 1 for any 1≤i≤n , and 0 in other ...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivations and biderivations of the non-square linear Lie algebra gl(m×n, 𝔽)\",\"authors\":\"Hongjin Liu, Zhengxin Chen\",\"doi\":\"10.1080/00927872.2024.2381814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let m, n be integers with m>n . Denote Mm,n by the set of all m×n matrices over the field F of characteristic zero. Let I be an n×m matrix with (i,i) -position 1 for any 1≤i≤n , and 0 in other ...\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00927872.2024.2381814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00927872.2024.2381814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Derivations and biderivations of the non-square linear Lie algebra gl(m×n, 𝔽)
Let m, n be integers with m>n . Denote Mm,n by the set of all m×n matrices over the field F of characteristic zero. Let I be an n×m matrix with (i,i) -position 1 for any 1≤i≤n , and 0 in other ...