{"title":"基于随机信任区域的有限和最小化算法研究","authors":"Stefania Bellavia, Benedetta Morini, Simone Rebegoldi","doi":"10.1080/10556788.2024.2346834","DOIUrl":null,"url":null,"abstract":"This work elaborates on the TRust-region-ish (TRish) algorithm, a stochastic optimization method for finite-sum minimization problems proposed by Curtis et al. in [F.E. Curtis, K. Scheinberg, and R...","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"12544 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation of stochastic trust-region based algorithms for finite-sum minimization\",\"authors\":\"Stefania Bellavia, Benedetta Morini, Simone Rebegoldi\",\"doi\":\"10.1080/10556788.2024.2346834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work elaborates on the TRust-region-ish (TRish) algorithm, a stochastic optimization method for finite-sum minimization problems proposed by Curtis et al. in [F.E. Curtis, K. Scheinberg, and R...\",\"PeriodicalId\":54673,\"journal\":{\"name\":\"Optimization Methods & Software\",\"volume\":\"12544 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods & Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2024.2346834\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556788.2024.2346834","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
这项工作详细阐述了 TRust-region-ish (TRish) 算法,这是柯蒂斯等人在[F.E. Curtis, K. Scheinberg, and R...] [F.E.柯蒂斯、K. Scheinberg 和 R...] 中提出的一种用于有限和最小化问题的随机优化方法。
An investigation of stochastic trust-region based algorithms for finite-sum minimization
This work elaborates on the TRust-region-ish (TRish) algorithm, a stochastic optimization method for finite-sum minimization problems proposed by Curtis et al. in [F.E. Curtis, K. Scheinberg, and R...
期刊介绍:
Optimization Methods and Software
publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design.
Topics include:
Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms.
Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators.
Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces.
Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.