D. S. Rosa, T. Frederico, R. M. Francisco, G. Krein, M. T. Yamashita
{"title":"非整数维的玻恩-奥本海默近似的可靠性","authors":"D. S. Rosa, T. Frederico, R. M. Francisco, G. Krein, M. T. Yamashita","doi":"arxiv-2408.01776","DOIUrl":null,"url":null,"abstract":"We address the question of the reliability of the Born-Oppenheimer (BO)\napproximation for a mass-imbalanced resonant three-body system embedded in\nnoninteger dimensions. We address this question within the problem of a system\nof currently experimental interest, namely $^7$Li$-^{87}$Rb$_2$. We compare the\nEfimov scale parameter as well as the wave functions obtained using the BO\napproximation with those obtained using the Bethe-Peierls boundary condition.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability of the Born-Oppenheimer approximation in noninteger dimensions\",\"authors\":\"D. S. Rosa, T. Frederico, R. M. Francisco, G. Krein, M. T. Yamashita\",\"doi\":\"arxiv-2408.01776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the question of the reliability of the Born-Oppenheimer (BO)\\napproximation for a mass-imbalanced resonant three-body system embedded in\\nnoninteger dimensions. We address this question within the problem of a system\\nof currently experimental interest, namely $^7$Li$-^{87}$Rb$_2$. We compare the\\nEfimov scale parameter as well as the wave functions obtained using the BO\\napproximation with those obtained using the Bethe-Peierls boundary condition.\",\"PeriodicalId\":501521,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Gases\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们探讨了嵌入非整数维的质量不平衡共振三体系统的玻恩-奥本海默(Born-Oppenheimer,BO)近似的可靠性问题。我们在一个目前实验感兴趣的系统(即 $^7$Li$-^{87}$Rb$_2$)中讨论了这个问题。我们比较了埃菲莫夫尺度参数以及用 BO 近似法和 Bethe-Peierls 边界条件得到的波函数。
Reliability of the Born-Oppenheimer approximation in noninteger dimensions
We address the question of the reliability of the Born-Oppenheimer (BO)
approximation for a mass-imbalanced resonant three-body system embedded in
noninteger dimensions. We address this question within the problem of a system
of currently experimental interest, namely $^7$Li$-^{87}$Rb$_2$. We compare the
Efimov scale parameter as well as the wave functions obtained using the BO
approximation with those obtained using the Bethe-Peierls boundary condition.