{"title":"基于链接预测的有限信息排名汇总","authors":"Guanghui Li , Yu Xiao , Jun Wu","doi":"10.1016/j.ipm.2024.103860","DOIUrl":null,"url":null,"abstract":"<div><p>Rank aggregation is a vital tool in facilitating decision-making processes that consider multiple criteria or attributes. While in many applications, the available ranked lists are often limited and quite partial for various reasons. This scarcity of ranking information presents a significant challenge to rank aggregation effectiveness. To address this problem of rank aggregation with limited information, in this study, on the basis of networked representation of ranking information, we employ the link prediction technology to mine potential ranking information. It aims to optimize the aggregation process, and maximize the aggregation effectiveness using available limited information. Experimental results indicate that our proposed approach can significantly enhance the aggregation effectiveness of existing rank aggregation methods, such as Borda’s method, competition graph method and Markov chain method. Our work provides a new way to solve rank aggregation problem with limited information and develops a new research paradigm for future rank aggregation studies from the perspective of network science.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rank aggregation with limited information based on link prediction\",\"authors\":\"Guanghui Li , Yu Xiao , Jun Wu\",\"doi\":\"10.1016/j.ipm.2024.103860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rank aggregation is a vital tool in facilitating decision-making processes that consider multiple criteria or attributes. While in many applications, the available ranked lists are often limited and quite partial for various reasons. This scarcity of ranking information presents a significant challenge to rank aggregation effectiveness. To address this problem of rank aggregation with limited information, in this study, on the basis of networked representation of ranking information, we employ the link prediction technology to mine potential ranking information. It aims to optimize the aggregation process, and maximize the aggregation effectiveness using available limited information. Experimental results indicate that our proposed approach can significantly enhance the aggregation effectiveness of existing rank aggregation methods, such as Borda’s method, competition graph method and Markov chain method. Our work provides a new way to solve rank aggregation problem with limited information and develops a new research paradigm for future rank aggregation studies from the perspective of network science.</p></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030645732400219X\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645732400219X","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Rank aggregation with limited information based on link prediction
Rank aggregation is a vital tool in facilitating decision-making processes that consider multiple criteria or attributes. While in many applications, the available ranked lists are often limited and quite partial for various reasons. This scarcity of ranking information presents a significant challenge to rank aggregation effectiveness. To address this problem of rank aggregation with limited information, in this study, on the basis of networked representation of ranking information, we employ the link prediction technology to mine potential ranking information. It aims to optimize the aggregation process, and maximize the aggregation effectiveness using available limited information. Experimental results indicate that our proposed approach can significantly enhance the aggregation effectiveness of existing rank aggregation methods, such as Borda’s method, competition graph method and Markov chain method. Our work provides a new way to solve rank aggregation problem with limited information and develops a new research paradigm for future rank aggregation studies from the perspective of network science.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.