Edinson Fuentes, Luis E. Garza, Martha L. Saiz
求助PDF
{"title":"关于 Laguerre-Sobolev 矩阵正交多项式","authors":"Edinson Fuentes, Luis E. Garza, Martha L. Saiz","doi":"10.1515/math-2024-0029","DOIUrl":null,"url":null,"abstract":"In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msub> <m:mrow> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">S</m:mi> </m:mrow> </m:msub> <m:mo>≔</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi mathvariant=\"bold\">M</m:mi> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mi mathvariant=\"bold\">W</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> </m:math> <jats:tex-math>{\\langle p,q\\rangle }_{{\\bf{S}}}:= \\underset{0}{\\overset{\\infty }{\\int }}{p}^{* }\\left(x){{\\bf{W}}}_{{\\bf{L}}}^{{\\bf{A}}}\\left(x)q\\left(x){\\rm{d}}x+{\\bf{M}}\\underset{0}{\\overset{\\infty }{\\int }}{(p^{\\prime} \\left(x))}^{* }{\\bf{W}}\\left(x)q^{\\prime} \\left(x){\\rm{d}}x,</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>λ</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">A</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\bf{W}}}_{{\\bf{L}}}^{{\\bf{A}}}\\left(x)={e}^{-\\lambda x}{x}^{{\\bf{A}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Laguerre matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">W</m:mi> </m:math> <jats:tex-math>{\\bf{W}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> </m:math> <jats:tex-math>q</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrix polynomials, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">M</m:mi> </m:math> <jats:tex-math>{\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">A</m:mi> </m:math> <jats:tex-math>{\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrices such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">M</m:mi> </m:math> <jats:tex-math>{\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is non-singular and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"bold\">A</m:mi> </m:math> <jats:tex-math>{\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a spectral condition, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0029_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>λ</m:mi> </m:math> <jats:tex-math>\\lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a complex number with positive real part.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Laguerre-Sobolev matrix orthogonal polynomials\",\"authors\":\"Edinson Fuentes, Luis E. Garza, Martha L. Saiz\",\"doi\":\"10.1515/math-2024-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:msub> <m:mrow> <m:mrow> <m:mo>⟨</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>⟩</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"bold\\\">S</m:mi> </m:mrow> </m:msub> <m:mo>≔</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"bold\\\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"bold\\\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"bold\\\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi mathvariant=\\\"bold\\\">M</m:mi> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:munderover> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mi mathvariant=\\\"bold\\\">W</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>q</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>x</m:mi> <m:mo>,</m:mo> </m:math> <jats:tex-math>{\\\\langle p,q\\\\rangle }_{{\\\\bf{S}}}:= \\\\underset{0}{\\\\overset{\\\\infty }{\\\\int }}{p}^{* }\\\\left(x){{\\\\bf{W}}}_{{\\\\bf{L}}}^{{\\\\bf{A}}}\\\\left(x)q\\\\left(x){\\\\rm{d}}x+{\\\\bf{M}}\\\\underset{0}{\\\\overset{\\\\infty }{\\\\int }}{(p^{\\\\prime} \\\\left(x))}^{* }{\\\\bf{W}}\\\\left(x)q^{\\\\prime} \\\\left(x){\\\\rm{d}}x,</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"bold\\\">W</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"bold\\\">L</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"bold\\\">A</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>λ</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"bold\\\">A</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\bf{W}}}_{{\\\\bf{L}}}^{{\\\\bf{A}}}\\\\left(x)={e}^{-\\\\lambda x}{x}^{{\\\\bf{A}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Laguerre matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"bold\\\">W</m:mi> </m:math> <jats:tex-math>{\\\\bf{W}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is some matrix weight, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>q</m:mi> </m:math> <jats:tex-math>q</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrix polynomials, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"bold\\\">M</m:mi> </m:math> <jats:tex-math>{\\\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"bold\\\">A</m:mi> </m:math> <jats:tex-math>{\\\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the matrices such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_008.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"bold\\\">M</m:mi> </m:math> <jats:tex-math>{\\\\bf{M}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is non-singular and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_009.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"bold\\\">A</m:mi> </m:math> <jats:tex-math>{\\\\bf{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a spectral condition, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0029_eq_010.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>λ</m:mi> </m:math> <jats:tex-math>\\\\lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a complex number with positive real part.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0029\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
On Laguerre-Sobolev matrix orthogonal polynomials
In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by ⟨ p , q ⟩ S ≔ ∫ 0 ∞ p * ( x ) W L A ( x ) q ( x ) d x + M ∫ 0 ∞ ( p ′ ( x ) ) * W ( x ) q ′ ( x ) d x , {\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}^{* }\left(x){{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty }{\int }}{(p^{\prime} \left(x))}^{* }{\bf{W}}\left(x)q^{\prime} \left(x){\rm{d}}x, where W L A ( x ) = e − λ x x A {{\bf{W}}}_{{\bf{L}}}^{{\bf{A}}}\left(x)={e}^{-\lambda x}{x}^{{\bf{A}}} is the Laguerre matrix weight, W {\bf{W}} is some matrix weight, p p and q q are the matrix polynomials, M {\bf{M}} and A {\bf{A}} are the matrices such that M {\bf{M}} is non-singular and A {\bf{A}} satisfies a spectral condition, and λ \lambda is a complex number with positive real part.