关于图上正薛定谔算子的兰迪斯猜想

Ujjal Das, Matthias Keller, Yehuda Pinchover
{"title":"关于图上正薛定谔算子的兰迪斯猜想","authors":"Ujjal Das, Matthias Keller, Yehuda Pinchover","doi":"arxiv-2408.02149","DOIUrl":null,"url":null,"abstract":"In this note we study Landis conjecture for positive Schr\\\"odinger operators\non graphs. More precisely, we give a decay criterion that ensures when $\n\\mathcal{H} $-harmonic functions for a positive Schr\\\"odinger operator $\n\\mathcal{H} $ with potentials bounded from above by $ 1 $ are trivial. We then\nspecifically look at the special cases of $ \\mathbb{Z}^{d} $ and regular trees\nfor which we get explicit decay criterion. Moreover, we consider the fractional\nanalogue of Landis conjecture on $ \\mathbb{Z}^{d} $. Our approach relies on the\ndiscrete version of Liouville comparison principle which is also proved in this\narticle.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Landis conjecture for positive Schrödinger operators on graphs\",\"authors\":\"Ujjal Das, Matthias Keller, Yehuda Pinchover\",\"doi\":\"arxiv-2408.02149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we study Landis conjecture for positive Schr\\\\\\\"odinger operators\\non graphs. More precisely, we give a decay criterion that ensures when $\\n\\\\mathcal{H} $-harmonic functions for a positive Schr\\\\\\\"odinger operator $\\n\\\\mathcal{H} $ with potentials bounded from above by $ 1 $ are trivial. We then\\nspecifically look at the special cases of $ \\\\mathbb{Z}^{d} $ and regular trees\\nfor which we get explicit decay criterion. Moreover, we consider the fractional\\nanalogue of Landis conjecture on $ \\\\mathbb{Z}^{d} $. Our approach relies on the\\ndiscrete version of Liouville comparison principle which is also proved in this\\narticle.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们研究了图上正薛定谔算子的兰迪斯猜想。更准确地说,我们给出了一个衰变准则,它可以确保正薛定谔算子 $\mathcal{H} $ 的谐函数(其势从上而下以 $ 1 $ 限定)是微不足道的。然后,我们特别研究了 $\mathbb{Z}^{d} $ 和规则树的特殊情况,并得到了明确的衰变准则。此外,我们还考虑了兰迪斯猜想在 $\mathbb{Z}^{d} $ 上的分数对应关系。我们的方法依赖于离散版的柳维尔比较原理,本文也证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Landis conjecture for positive Schrödinger operators on graphs
In this note we study Landis conjecture for positive Schr\"odinger operators on graphs. More precisely, we give a decay criterion that ensures when $ \mathcal{H} $-harmonic functions for a positive Schr\"odinger operator $ \mathcal{H} $ with potentials bounded from above by $ 1 $ are trivial. We then specifically look at the special cases of $ \mathbb{Z}^{d} $ and regular trees for which we get explicit decay criterion. Moreover, we consider the fractional analogue of Landis conjecture on $ \mathbb{Z}^{d} $. Our approach relies on the discrete version of Liouville comparison principle which is also proved in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信