p-adic 等边线和 p-adic van Lint-Seidel 相对边界

K. Mahesh Krishna
{"title":"p-adic 等边线和 p-adic van Lint-Seidel 相对边界","authors":"K. Mahesh Krishna","doi":"arxiv-2408.00810","DOIUrl":null,"url":null,"abstract":"We introduce the notion of p-adic equiangular lines and derive the first\nfundamental relation between common angle, dimension of the space and the\nnumber of lines. More precisely, we show that if $\\{\\tau_j\\}_{j=1}^n$ is p-adic\n$\\gamma$-equiangular lines in $\\mathbb{Q}^d_p$, then \\begin{align*} (1)\n\\quad\\quad \\quad \\quad |n|^2\\leq |d|\\max\\{|n|, \\gamma^2 \\}. \\end{align*} We call Inequality (1) as the p-adic van Lint-Seidel relative bound. We\nbelieve that this complements fundamental van Lint-Seidel \\textit{[Indag.\nMath., 1966]} relative bound for equiangular lines in the p-adic case.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"p-adic Equiangular Lines and p-adic van Lint-Seidel Relative Bound\",\"authors\":\"K. Mahesh Krishna\",\"doi\":\"arxiv-2408.00810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of p-adic equiangular lines and derive the first\\nfundamental relation between common angle, dimension of the space and the\\nnumber of lines. More precisely, we show that if $\\\\{\\\\tau_j\\\\}_{j=1}^n$ is p-adic\\n$\\\\gamma$-equiangular lines in $\\\\mathbb{Q}^d_p$, then \\\\begin{align*} (1)\\n\\\\quad\\\\quad \\\\quad \\\\quad |n|^2\\\\leq |d|\\\\max\\\\{|n|, \\\\gamma^2 \\\\}. \\\\end{align*} We call Inequality (1) as the p-adic van Lint-Seidel relative bound. We\\nbelieve that this complements fundamental van Lint-Seidel \\\\textit{[Indag.\\nMath., 1966]} relative bound for equiangular lines in the p-adic case.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了 p-adic 等角线的概念,并推导出公角、空间维数和线数之间的第一个基本关系。更准确地说,我们证明了如果 $\{tau_j\}_{j=1}^n$ 是 $\mathbb{Q}^d_p$ 中的 p-adic$\gamma$ 等角线,那么 \begin{align*} (1)\quad\quad \quad |n|^2\leq |d|\max\{|n|, \gamma^2 \}。\end{align*}我们把不等式 (1) 称为 p-adic van Lint-Seidel 相对约束。我们认为这是对 p-adic 情况下等边线的基本 van Lint-Seidel (textit{[Indag.Math.,1966]})相对约束的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p-adic Equiangular Lines and p-adic van Lint-Seidel Relative Bound
We introduce the notion of p-adic equiangular lines and derive the first fundamental relation between common angle, dimension of the space and the number of lines. More precisely, we show that if $\{\tau_j\}_{j=1}^n$ is p-adic $\gamma$-equiangular lines in $\mathbb{Q}^d_p$, then \begin{align*} (1) \quad\quad \quad \quad |n|^2\leq |d|\max\{|n|, \gamma^2 \}. \end{align*} We call Inequality (1) as the p-adic van Lint-Seidel relative bound. We believe that this complements fundamental van Lint-Seidel \textit{[Indag. Math., 1966]} relative bound for equiangular lines in the p-adic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信