光伏电池混合动力系统的运行模式控制方法

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Wenping Zhang, Yiming Wang, Po Xu, Donghui Li, Baosong Liu
{"title":"光伏电池混合动力系统的运行模式控制方法","authors":"Wenping Zhang, Yiming Wang, Po Xu, Donghui Li, Baosong Liu","doi":"10.3389/fenrg.2024.1435310","DOIUrl":null,"url":null,"abstract":"Depending on the PV power, load power, and battery status, the system may operate in different modes. The control loop may have to switch between operating modes. In practice, it is difficult to implement control loop switching because the transition and dynamic process are difficult to control. As a result, this paper presents a generalized mode control method that avoids loop switching across modes. First, system structure and topology are introduced. The operating conditions for both grid-connected and off-grid modes are then divided into six sub-cases. Furthermore, the control architecture, control loop, and reference transition for various scenarios are described. Finally, an experimental platform is built, and the results are presented to verify the proposed method.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An operating mode control method for photovoltaic (PV) battery hybrid systems\",\"authors\":\"Wenping Zhang, Yiming Wang, Po Xu, Donghui Li, Baosong Liu\",\"doi\":\"10.3389/fenrg.2024.1435310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depending on the PV power, load power, and battery status, the system may operate in different modes. The control loop may have to switch between operating modes. In practice, it is difficult to implement control loop switching because the transition and dynamic process are difficult to control. As a result, this paper presents a generalized mode control method that avoids loop switching across modes. First, system structure and topology are introduced. The operating conditions for both grid-connected and off-grid modes are then divided into six sub-cases. Furthermore, the control architecture, control loop, and reference transition for various scenarios are described. Finally, an experimental platform is built, and the results are presented to verify the proposed method.\",\"PeriodicalId\":12428,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2024.1435310\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1435310","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

根据光伏功率、负载功率和电池状态,系统可能以不同的模式运行。控制回路可能需要在不同的运行模式之间进行切换。在实践中,由于转换和动态过程难以控制,因此很难实现控制环路的切换。因此,本文提出了一种避免环路跨模式切换的广义模式控制方法。首先,介绍系统结构和拓扑结构。然后,将并网模式和离网模式的运行条件分为六个子情况。此外,还介绍了各种情况下的控制结构、控制回路和参考转换。最后,建立了一个实验平台,并给出了实验结果,以验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An operating mode control method for photovoltaic (PV) battery hybrid systems
Depending on the PV power, load power, and battery status, the system may operate in different modes. The control loop may have to switch between operating modes. In practice, it is difficult to implement control loop switching because the transition and dynamic process are difficult to control. As a result, this paper presents a generalized mode control method that avoids loop switching across modes. First, system structure and topology are introduced. The operating conditions for both grid-connected and off-grid modes are then divided into six sub-cases. Furthermore, the control architecture, control loop, and reference transition for various scenarios are described. Finally, an experimental platform is built, and the results are presented to verify the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Energy Research
Frontiers in Energy Research Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
3.90
自引率
11.80%
发文量
1727
审稿时长
12 weeks
期刊介绍: Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信