ConvStabNet:基于 CNN 的 SUPG 方案局部稳定参数预测方法

IF 1.4 2区 数学 Q1 MATHEMATICS
Calcolo Pub Date : 2024-08-08 DOI:10.1007/s10092-024-00597-x
Sangeeta Yadav, Sashikumaar Ganesan
{"title":"ConvStabNet:基于 CNN 的 SUPG 方案局部稳定参数预测方法","authors":"Sangeeta Yadav, Sashikumaar Ganesan","doi":"10.1007/s10092-024-00597-x","DOIUrl":null,"url":null,"abstract":"<p>This paper presents ConvStabNet, a convolutional neural network designed to predict optimal stabilization parameters for each cell in the Streamline Upwind Petrov Galerkin (SUPG) stabilization scheme. ConvStabNet employs a shared parameter approach, allowing the network to understand the relationships between cell characteristics and their corresponding stabilization parameters while efficiently handling the parameter space. Comparative analyses with state-of-the-art neural network solvers based on variational formulations highlight the superior performance of ConvStabNet. To improve the accuracy of SUPG in solving partial differential equations (PDEs) with interior and boundary layers, ConvStabNet incorporates a loss function that combines a strong residual component with a cross-wind derivative term. The findings confirm ConvStabNet as a promising method for accurately predicting stabilization parameters in SUPG, thereby marking it as an advancement over neural network-based PDE solvers.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"41 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ConvStabNet: a CNN-based approach for the prediction of local stabilization parameter for SUPG scheme\",\"authors\":\"Sangeeta Yadav, Sashikumaar Ganesan\",\"doi\":\"10.1007/s10092-024-00597-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents ConvStabNet, a convolutional neural network designed to predict optimal stabilization parameters for each cell in the Streamline Upwind Petrov Galerkin (SUPG) stabilization scheme. ConvStabNet employs a shared parameter approach, allowing the network to understand the relationships between cell characteristics and their corresponding stabilization parameters while efficiently handling the parameter space. Comparative analyses with state-of-the-art neural network solvers based on variational formulations highlight the superior performance of ConvStabNet. To improve the accuracy of SUPG in solving partial differential equations (PDEs) with interior and boundary layers, ConvStabNet incorporates a loss function that combines a strong residual component with a cross-wind derivative term. The findings confirm ConvStabNet as a promising method for accurately predicting stabilization parameters in SUPG, thereby marking it as an advancement over neural network-based PDE solvers.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00597-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00597-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍的 ConvStabNet 是一种卷积神经网络,旨在预测 Streamline Upwind Petrov Galerkin (SUPG) 稳定方案中每个单元的最佳稳定参数。ConvStabNet 采用共享参数方法,使网络能够理解单元特征与其相应稳定参数之间的关系,同时有效处理参数空间。与基于变分公式的最先进神经网络求解器的对比分析凸显了 ConvStabNet 的卓越性能。为了提高 SUPG 在求解具有内部层和边界层的偏微分方程 (PDE) 时的精度,ConvStabNet 加入了一个损失函数,该函数结合了强残差分量和交叉风导数项。研究结果证实,ConvStabNet 是在 SUPG 中准确预测稳定参数的一种有前途的方法,从而标志着它比基于神经网络的 PDE 求解器更先进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ConvStabNet: a CNN-based approach for the prediction of local stabilization parameter for SUPG scheme

ConvStabNet: a CNN-based approach for the prediction of local stabilization parameter for SUPG scheme

This paper presents ConvStabNet, a convolutional neural network designed to predict optimal stabilization parameters for each cell in the Streamline Upwind Petrov Galerkin (SUPG) stabilization scheme. ConvStabNet employs a shared parameter approach, allowing the network to understand the relationships between cell characteristics and their corresponding stabilization parameters while efficiently handling the parameter space. Comparative analyses with state-of-the-art neural network solvers based on variational formulations highlight the superior performance of ConvStabNet. To improve the accuracy of SUPG in solving partial differential equations (PDEs) with interior and boundary layers, ConvStabNet incorporates a loss function that combines a strong residual component with a cross-wind derivative term. The findings confirm ConvStabNet as a promising method for accurately predicting stabilization parameters in SUPG, thereby marking it as an advancement over neural network-based PDE solvers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信