里德-穆勒编码 $RM_2(2,2)$ 的高权重谱和贝蒂数

Sudhir R. Ghorpade, Trygve Johnsen, Rati Ludhani, Rakhi Pratihar
{"title":"里德-穆勒编码 $RM_2(2,2)$ 的高权重谱和贝蒂数","authors":"Sudhir R. Ghorpade, Trygve Johnsen, Rati Ludhani, Rakhi Pratihar","doi":"arxiv-2408.02548","DOIUrl":null,"url":null,"abstract":"We determine the higher weight spectra of $q$-ary Reed-Muller codes\n$C_q=RM_q(2,2)$ for all prime powers $q$. This is equivalent to finding the\nusual weight distributions of all extension codes of $C_q$ over every field\nextension of $F_q$ of finite degree. To obtain our results we will utilize\nwell-known connections between these weights and properties of the\nStanley-Reisner rings of a series of matroids associated to each code $C_q$. In\nthe process, we are able to explicitly determine all the graded Betti numbers\nof matroids associated to $C_q$ and its elongations.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher weight spectra and Betti numbers of Reed-Muller codes $RM_2(2,2)$\",\"authors\":\"Sudhir R. Ghorpade, Trygve Johnsen, Rati Ludhani, Rakhi Pratihar\",\"doi\":\"arxiv-2408.02548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the higher weight spectra of $q$-ary Reed-Muller codes\\n$C_q=RM_q(2,2)$ for all prime powers $q$. This is equivalent to finding the\\nusual weight distributions of all extension codes of $C_q$ over every field\\nextension of $F_q$ of finite degree. To obtain our results we will utilize\\nwell-known connections between these weights and properties of the\\nStanley-Reisner rings of a series of matroids associated to each code $C_q$. In\\nthe process, we are able to explicitly determine all the graded Betti numbers\\nof matroids associated to $C_q$ and its elongations.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了所有质幂 $q$ 的 $q$ary 里德-穆勒编码$C_q=RM_q(2,2)$ 的高权重谱。这等同于找到 $C_q$ 在有限阶的 $F_q$ 的每一个字段扩展上的所有扩展码的权重分布。为了得到我们的结果,我们将利用这些权重与与每个代码 $C_q$ 相关联的一系列矩阵的斯坦利-赖斯纳环的性质之间的已知联系。在这个过程中,我们能够明确地确定与 $C_q$ 及其延伸相关的矩阵的所有分级贝蒂数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher weight spectra and Betti numbers of Reed-Muller codes $RM_2(2,2)$
We determine the higher weight spectra of $q$-ary Reed-Muller codes $C_q=RM_q(2,2)$ for all prime powers $q$. This is equivalent to finding the usual weight distributions of all extension codes of $C_q$ over every field extension of $F_q$ of finite degree. To obtain our results we will utilize well-known connections between these weights and properties of the Stanley-Reisner rings of a series of matroids associated to each code $C_q$. In the process, we are able to explicitly determine all the graded Betti numbers of matroids associated to $C_q$ and its elongations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信