A. Borovykh, N. Kantas, P. Parpas, G. A. Pavliotis
{"title":"具有共识约束条件的凸优化随机镜像后裔法","authors":"A. Borovykh, N. Kantas, P. Parpas, G. A. Pavliotis","doi":"10.1137/22m1515197","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2208-2241, September 2024. <br/> Abstract.The mirror descent algorithm is known to be effective in situations where it is beneficial to adapt the mirror map to the underlying geometry of the optimization model. However, the effect of mirror maps on the geometry of distributed optimization problems has not been previously addressed. In this paper we study an exact distributed mirror descent algorithm in continuous time under additive noise. We establish a linear convergence rate of the proposed dynamics for the setting of convex optimization. Our analysis draws motivation from the augmented Lagrangian and its relation to gradient tracking. To further explore the benefits of mirror maps in a distributed setting we present a preconditioned variant of our algorithm with an additional mirror map over the Lagrangian dual variables. This allows our method to adapt to both the geometry of the primal variables and the geometry of the consensus constraint. We also propose a Gauss–Seidel type discretization scheme for the proposed method and establish its linear convergence rate. For certain classes of problems we identify mirror maps that mitigate the effect of the graph’s spectral properties on the convergence rate of the algorithm. Using numerical experiments, we demonstrate the efficiency of the methodology on convex models, both with and without constraints. Our findings show that the proposed method outperforms other methods, especially in scenarios where the model’s geometry is not captured by the standard Euclidean norm.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"24 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Mirror Descent for Convex Optimization with Consensus Constraints\",\"authors\":\"A. Borovykh, N. Kantas, P. Parpas, G. A. Pavliotis\",\"doi\":\"10.1137/22m1515197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2208-2241, September 2024. <br/> Abstract.The mirror descent algorithm is known to be effective in situations where it is beneficial to adapt the mirror map to the underlying geometry of the optimization model. However, the effect of mirror maps on the geometry of distributed optimization problems has not been previously addressed. In this paper we study an exact distributed mirror descent algorithm in continuous time under additive noise. We establish a linear convergence rate of the proposed dynamics for the setting of convex optimization. Our analysis draws motivation from the augmented Lagrangian and its relation to gradient tracking. To further explore the benefits of mirror maps in a distributed setting we present a preconditioned variant of our algorithm with an additional mirror map over the Lagrangian dual variables. This allows our method to adapt to both the geometry of the primal variables and the geometry of the consensus constraint. We also propose a Gauss–Seidel type discretization scheme for the proposed method and establish its linear convergence rate. For certain classes of problems we identify mirror maps that mitigate the effect of the graph’s spectral properties on the convergence rate of the algorithm. Using numerical experiments, we demonstrate the efficiency of the methodology on convex models, both with and without constraints. Our findings show that the proposed method outperforms other methods, especially in scenarios where the model’s geometry is not captured by the standard Euclidean norm.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1515197\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1515197","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stochastic Mirror Descent for Convex Optimization with Consensus Constraints
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2208-2241, September 2024. Abstract.The mirror descent algorithm is known to be effective in situations where it is beneficial to adapt the mirror map to the underlying geometry of the optimization model. However, the effect of mirror maps on the geometry of distributed optimization problems has not been previously addressed. In this paper we study an exact distributed mirror descent algorithm in continuous time under additive noise. We establish a linear convergence rate of the proposed dynamics for the setting of convex optimization. Our analysis draws motivation from the augmented Lagrangian and its relation to gradient tracking. To further explore the benefits of mirror maps in a distributed setting we present a preconditioned variant of our algorithm with an additional mirror map over the Lagrangian dual variables. This allows our method to adapt to both the geometry of the primal variables and the geometry of the consensus constraint. We also propose a Gauss–Seidel type discretization scheme for the proposed method and establish its linear convergence rate. For certain classes of problems we identify mirror maps that mitigate the effect of the graph’s spectral properties on the convergence rate of the algorithm. Using numerical experiments, we demonstrate the efficiency of the methodology on convex models, both with and without constraints. Our findings show that the proposed method outperforms other methods, especially in scenarios where the model’s geometry is not captured by the standard Euclidean norm.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.