纠正两个恰好删除 b$ 的脉冲串的编码

Zuo Ye, Wenjun Yu, Ohad Elishco
{"title":"纠正两个恰好删除 b$ 的脉冲串的编码","authors":"Zuo Ye, Wenjun Yu, Ohad Elishco","doi":"arxiv-2408.03113","DOIUrl":null,"url":null,"abstract":"In this paper, we explore constructions for codes that correct two bursts of\ndeletions, with each burst having length exactly $b$. Previously, the best\nknown construction, derived using the syndrome compression technique, achieved\na redundancy of at most $7\\log n+O\\left(\\log n/\\log\\log n\\right)$. In this\nwork, we present new constructions for all $q\\ge 2$ that achieve redundancy at\nmost $7\\log n+O(\\log\\log n)$ when $b>1$. Additionally, for $b=1$, we provide a\nnew construction of $q$-ary two-deletion correcting codes with redundancy\n$5\\log n+O(\\log\\log n)$ for all $q>2$.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codes Correcting Two Bursts of Exactly $b$ Deletions\",\"authors\":\"Zuo Ye, Wenjun Yu, Ohad Elishco\",\"doi\":\"arxiv-2408.03113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore constructions for codes that correct two bursts of\\ndeletions, with each burst having length exactly $b$. Previously, the best\\nknown construction, derived using the syndrome compression technique, achieved\\na redundancy of at most $7\\\\log n+O\\\\left(\\\\log n/\\\\log\\\\log n\\\\right)$. In this\\nwork, we present new constructions for all $q\\\\ge 2$ that achieve redundancy at\\nmost $7\\\\log n+O(\\\\log\\\\log n)$ when $b>1$. Additionally, for $b=1$, we provide a\\nnew construction of $q$-ary two-deletion correcting codes with redundancy\\n$5\\\\log n+O(\\\\log\\\\log n)$ for all $q>2$.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了能纠正两个突发删除的编码构造,每个突发删除的长度正好为 $b$。在此之前,利用综合征压缩技术推导出的最著名的构造最多实现了 $7\log n+O\left(\log n/\log n\right)$ 的冗余度。在这项工作中,我们提出了针对所有$q\ge 2$的新构造,当$b>1$时,最多可实现$7\log n+O(\log\log n)$的冗余度。此外,对于 $b=1$,我们提供了一种新的 $q$-ary 双删除纠错码的构造,在所有 $q>2$ 的情况下,其冗余度为 $5\log n+O(\log\log n)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codes Correcting Two Bursts of Exactly $b$ Deletions
In this paper, we explore constructions for codes that correct two bursts of deletions, with each burst having length exactly $b$. Previously, the best known construction, derived using the syndrome compression technique, achieved a redundancy of at most $7\log n+O\left(\log n/\log\log n\right)$. In this work, we present new constructions for all $q\ge 2$ that achieve redundancy at most $7\log n+O(\log\log n)$ when $b>1$. Additionally, for $b=1$, we provide a new construction of $q$-ary two-deletion correcting codes with redundancy $5\log n+O(\log\log n)$ for all $q>2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信