Iván Blanco-Chacón, Alberto F. Boix, Marcus Grefferath, Erik Hieta-aho
{"title":"伽罗瓦环上兰克度量编码的麦克威廉斯等式","authors":"Iván Blanco-Chacón, Alberto F. Boix, Marcus Grefferath, Erik Hieta-aho","doi":"arxiv-2408.03237","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study rank metric codes over Galois rings. In\nparticular, we prove MacWilliams identities for finite chain rings relating the\nsequences of $q$-binomial moments of a code and its dual and for Gabidulin\nanalogues of free codes over Galois rings we prove the corresponding\nMacWilliams identity as a functional expression relating the weight enumerator\nof the dual with the MacWilliams transform of the weight enumerator of the\noriginal code plus one extra term attached to the zero divisors.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MacWilliams Identities for Rank metric codes over Galois rings\",\"authors\":\"Iván Blanco-Chacón, Alberto F. Boix, Marcus Grefferath, Erik Hieta-aho\",\"doi\":\"arxiv-2408.03237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to study rank metric codes over Galois rings. In\\nparticular, we prove MacWilliams identities for finite chain rings relating the\\nsequences of $q$-binomial moments of a code and its dual and for Gabidulin\\nanalogues of free codes over Galois rings we prove the corresponding\\nMacWilliams identity as a functional expression relating the weight enumerator\\nof the dual with the MacWilliams transform of the weight enumerator of the\\noriginal code plus one extra term attached to the zero divisors.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MacWilliams Identities for Rank metric codes over Galois rings
The purpose of this paper is to study rank metric codes over Galois rings. In
particular, we prove MacWilliams identities for finite chain rings relating the
sequences of $q$-binomial moments of a code and its dual and for Gabidulin
analogues of free codes over Galois rings we prove the corresponding
MacWilliams identity as a functional expression relating the weight enumerator
of the dual with the MacWilliams transform of the weight enumerator of the
original code plus one extra term attached to the zero divisors.