利用 GenAI 进行可信的图像语义交流:可解释性、可控性和效率

Xijun Wang, Dongshan Ye, Chenyuan Feng, Howard H. Yang, Xiang Chen, Tony Q. S. Quek
{"title":"利用 GenAI 进行可信的图像语义交流:可解释性、可控性和效率","authors":"Xijun Wang, Dongshan Ye, Chenyuan Feng, Howard H. Yang, Xiang Chen, Tony Q. S. Quek","doi":"arxiv-2408.03806","DOIUrl":null,"url":null,"abstract":"Image semantic communication (ISC) has garnered significant attention for its\npotential to achieve high efficiency in visual content transmission. However,\nexisting ISC systems based on joint source-channel coding face challenges in\ninterpretability, operability, and compatibility. To address these limitations,\nwe propose a novel trustworthy ISC framework. This approach leverages text\nextraction and segmentation mapping techniques to convert images into\nexplainable semantics, while employing Generative Artificial Intelligence\n(GenAI) for multiple downstream inference tasks. We also introduce a multi-rate\nISC transmission protocol that dynamically adapts to both the received\nexplainable semantic content and specific task requirements at the receiver.\nSimulation results demonstrate that our framework achieves explainable\nlearning, decoupled training, and compatible transmission in various\napplication scenarios. Finally, some intriguing research directions and\napplication scenarios are identified.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency\",\"authors\":\"Xijun Wang, Dongshan Ye, Chenyuan Feng, Howard H. Yang, Xiang Chen, Tony Q. S. Quek\",\"doi\":\"arxiv-2408.03806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image semantic communication (ISC) has garnered significant attention for its\\npotential to achieve high efficiency in visual content transmission. However,\\nexisting ISC systems based on joint source-channel coding face challenges in\\ninterpretability, operability, and compatibility. To address these limitations,\\nwe propose a novel trustworthy ISC framework. This approach leverages text\\nextraction and segmentation mapping techniques to convert images into\\nexplainable semantics, while employing Generative Artificial Intelligence\\n(GenAI) for multiple downstream inference tasks. We also introduce a multi-rate\\nISC transmission protocol that dynamically adapts to both the received\\nexplainable semantic content and specific task requirements at the receiver.\\nSimulation results demonstrate that our framework achieves explainable\\nlearning, decoupled training, and compatible transmission in various\\napplication scenarios. Finally, some intriguing research directions and\\napplication scenarios are identified.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像语义通信(ISC)因其在实现高效视觉内容传输方面的潜力而备受关注。然而,现有的基于源信道联合编码的 ISC 系统在可解释性、可操作性和兼容性方面面临挑战。为了解决这些局限性,我们提出了一种新型的可信 ISC 框架。这种方法利用文本提取和分割映射技术将图像转换为可解释的语义,同时采用生成式人工智能(GenAI)完成多个下游推理任务。仿真结果表明,我们的框架在各种应用场景中实现了可解释学习、解耦训练和兼容传输。最后,我们确定了一些令人感兴趣的研究方向和应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trustworthy Image Semantic Communication with GenAI: Explainablity, Controllability, and Efficiency
Image semantic communication (ISC) has garnered significant attention for its potential to achieve high efficiency in visual content transmission. However, existing ISC systems based on joint source-channel coding face challenges in interpretability, operability, and compatibility. To address these limitations, we propose a novel trustworthy ISC framework. This approach leverages text extraction and segmentation mapping techniques to convert images into explainable semantics, while employing Generative Artificial Intelligence (GenAI) for multiple downstream inference tasks. We also introduce a multi-rate ISC transmission protocol that dynamically adapts to both the received explainable semantic content and specific task requirements at the receiver. Simulation results demonstrate that our framework achieves explainable learning, decoupled training, and compatible transmission in various application scenarios. Finally, some intriguing research directions and application scenarios are identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信