基于稀疏测量的高效城市 3D 无线电地图估算

Xinwei Chen, Xiaofeng Zhong, Zijian Zhang, Linglong Dai, Shidong Zhou
{"title":"基于稀疏测量的高效城市 3D 无线电地图估算","authors":"Xinwei Chen, Xiaofeng Zhong, Zijian Zhang, Linglong Dai, Shidong Zhou","doi":"arxiv-2408.04205","DOIUrl":null,"url":null,"abstract":"Recent widespread applications for unmanned aerial vehicles (UAVs) -- from\ninfrastructure inspection to urban logistics -- have prompted an urgent need\nfor high-accuracy three-dimensional (3D) radio maps. However, existing methods\ndesigned for two-dimensional radio maps face challenges of high measurement\ncosts and limited data availability when extended to 3D scenarios. To tackle\nthese challenges, we first build a real-world large-scale 3D radio map dataset,\ncovering over 4.2 million m^3 and over 4 thousand data points in complex urban\nenvironments. We propose a Gaussian Process Regression-based scheme for 3D\nradio map estimation, allowing us to realize more accurate map recovery with a\nlower RMSE than state-of-the-art schemes by over 2.5 dB. To further enhance\ndata efficiency, we propose two methods for training point selection, including\nan offline clustering-based method and an online maximum a posterior\n(MAP)-based method. Extensive experiments demonstrate that the proposed scheme\nnot only achieves full-map recovery with only 2% of UAV measurements, but also\nsheds light on future studies on 3D radio maps.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency Urban 3D Radio Map Estimation Based on Sparse Measurements\",\"authors\":\"Xinwei Chen, Xiaofeng Zhong, Zijian Zhang, Linglong Dai, Shidong Zhou\",\"doi\":\"arxiv-2408.04205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent widespread applications for unmanned aerial vehicles (UAVs) -- from\\ninfrastructure inspection to urban logistics -- have prompted an urgent need\\nfor high-accuracy three-dimensional (3D) radio maps. However, existing methods\\ndesigned for two-dimensional radio maps face challenges of high measurement\\ncosts and limited data availability when extended to 3D scenarios. To tackle\\nthese challenges, we first build a real-world large-scale 3D radio map dataset,\\ncovering over 4.2 million m^3 and over 4 thousand data points in complex urban\\nenvironments. We propose a Gaussian Process Regression-based scheme for 3D\\nradio map estimation, allowing us to realize more accurate map recovery with a\\nlower RMSE than state-of-the-art schemes by over 2.5 dB. To further enhance\\ndata efficiency, we propose two methods for training point selection, including\\nan offline clustering-based method and an online maximum a posterior\\n(MAP)-based method. Extensive experiments demonstrate that the proposed scheme\\nnot only achieves full-map recovery with only 2% of UAV measurements, but also\\nsheds light on future studies on 3D radio maps.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从基础设施检测到城市物流,无人驾驶飞行器(UAV)最近的广泛应用促使人们迫切需要高精度的三维(3D)无线电地图。然而,针对二维无线电地图设计的现有方法在扩展到三维场景时面临着测量成本高和数据可用性有限的挑战。为了应对这些挑战,我们首先建立了一个真实世界的大规模三维无线电地图数据集,涵盖复杂城市环境中超过 420 万 m^3、超过 4000 个数据点。我们提出了一种基于高斯过程回归的三维无线电地图估计方案,使我们能够实现更精确的地图恢复,RMSE 比最先进的方案低 2.5 dB 以上。为了进一步提高数据效率,我们提出了两种训练点选择方法,包括基于离线聚类的方法和基于在线最大后验(MAP)的方法。广泛的实验证明,所提出的方案不仅只用了 2% 的无人机测量数据就实现了全地图恢复,而且还为未来的三维无线电地图研究提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Efficiency Urban 3D Radio Map Estimation Based on Sparse Measurements
Recent widespread applications for unmanned aerial vehicles (UAVs) -- from infrastructure inspection to urban logistics -- have prompted an urgent need for high-accuracy three-dimensional (3D) radio maps. However, existing methods designed for two-dimensional radio maps face challenges of high measurement costs and limited data availability when extended to 3D scenarios. To tackle these challenges, we first build a real-world large-scale 3D radio map dataset, covering over 4.2 million m^3 and over 4 thousand data points in complex urban environments. We propose a Gaussian Process Regression-based scheme for 3D radio map estimation, allowing us to realize more accurate map recovery with a lower RMSE than state-of-the-art schemes by over 2.5 dB. To further enhance data efficiency, we propose two methods for training point selection, including an offline clustering-based method and an online maximum a posterior (MAP)-based method. Extensive experiments demonstrate that the proposed scheme not only achieves full-map recovery with only 2% of UAV measurements, but also sheds light on future studies on 3D radio maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信