关于有限域上的多对一映射

Yanbin Zheng, Yanjin Ding, Meiying Zhang, Pingzhi Yuan, Qiang Wang
{"title":"关于有限域上的多对一映射","authors":"Yanbin Zheng, Yanjin Ding, Meiying Zhang, Pingzhi Yuan, Qiang Wang","doi":"arxiv-2408.04218","DOIUrl":null,"url":null,"abstract":"The definition of many-to-one mapping, or $m$-to-$1$ mapping for short,\nbetween two finite sets is introduced in this paper, which unifies and\ngeneralizes the definitions of $2$-to-$1$ mappings and $n$-to-$1$ mappings. A\ngeneralized local criterion is given, which is an abstract criterion for a\nmapping to be $m$-to-$1$. By employing the generalized local criterion, three\nconstructions of $m$-to-$1$ mapping are proposed, which unify and generalize\nall the previous constructions of $2$-to-$1$ mappings and $n$-to-$1$ mappings.\nThen the $m$-to-$1$ property of polynomials $f(x) = x^r h(x^s)$ on\n$\\mathbb{F}_{q}^{*}$ is studied by using these three constructions. A series of\nexplicit conditions for~$f$ to be an $m$-to-$1$ mapping on $\\mathbb{F}_{q}^{*}$\nare found through the detailed discussion of the parameters $m$, $s$, $q$ and\nthe polynomial $h$. These results extend many conclusions in the literature.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On many-to-one mappings over finite fields\",\"authors\":\"Yanbin Zheng, Yanjin Ding, Meiying Zhang, Pingzhi Yuan, Qiang Wang\",\"doi\":\"arxiv-2408.04218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The definition of many-to-one mapping, or $m$-to-$1$ mapping for short,\\nbetween two finite sets is introduced in this paper, which unifies and\\ngeneralizes the definitions of $2$-to-$1$ mappings and $n$-to-$1$ mappings. A\\ngeneralized local criterion is given, which is an abstract criterion for a\\nmapping to be $m$-to-$1$. By employing the generalized local criterion, three\\nconstructions of $m$-to-$1$ mapping are proposed, which unify and generalize\\nall the previous constructions of $2$-to-$1$ mappings and $n$-to-$1$ mappings.\\nThen the $m$-to-$1$ property of polynomials $f(x) = x^r h(x^s)$ on\\n$\\\\mathbb{F}_{q}^{*}$ is studied by using these three constructions. A series of\\nexplicit conditions for~$f$ to be an $m$-to-$1$ mapping on $\\\\mathbb{F}_{q}^{*}$\\nare found through the detailed discussion of the parameters $m$, $s$, $q$ and\\nthe polynomial $h$. These results extend many conclusions in the literature.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了两个有限集之间的多对一映射(简称为 $m$-to-$1$ 映射)的定义,它统一并概括了 $2$-to-$1$ 映射和 $n$-to-$1$ 映射的定义。本文给出了一个广义局部准则,它是映射为 $m$-to-$1$ 的抽象准则。通过使用广义局部判据,提出了 $m$-to-$1$ 映射的三种构造,它们统一并概括了之前所有 $2$-to-$1$ 映射和 $n$-to-$1$ 映射的构造。通过对参数$m$、$s$、$q$和多项式$h$的详细讨论,我们发现了~$f$在$\mathbb{F}_{q}^{*}$上从$m$到$1$的映射的一系列明确条件。这些结果扩展了文献中的许多结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On many-to-one mappings over finite fields
The definition of many-to-one mapping, or $m$-to-$1$ mapping for short, between two finite sets is introduced in this paper, which unifies and generalizes the definitions of $2$-to-$1$ mappings and $n$-to-$1$ mappings. A generalized local criterion is given, which is an abstract criterion for a mapping to be $m$-to-$1$. By employing the generalized local criterion, three constructions of $m$-to-$1$ mapping are proposed, which unify and generalize all the previous constructions of $2$-to-$1$ mappings and $n$-to-$1$ mappings. Then the $m$-to-$1$ property of polynomials $f(x) = x^r h(x^s)$ on $\mathbb{F}_{q}^{*}$ is studied by using these three constructions. A series of explicit conditions for~$f$ to be an $m$-to-$1$ mapping on $\mathbb{F}_{q}^{*}$ are found through the detailed discussion of the parameters $m$, $s$, $q$ and the polynomial $h$. These results extend many conclusions in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信