通过熔融沉积建模 3D 打印技术将还原氧化石墨烯修饰电极用于过氧化氢传感器

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yan Dou, Rui Dai, Haofan Sun, Kun Bi, Xin Zhao and Qiong Nian
{"title":"通过熔融沉积建模 3D 打印技术将还原氧化石墨烯修饰电极用于过氧化氢传感器","authors":"Yan Dou, Rui Dai, Haofan Sun, Kun Bi, Xin Zhao and Qiong Nian","doi":"10.1088/2053-1583/ad6910","DOIUrl":null,"url":null,"abstract":"Fused deposition modeling 3D printing provides a cost-effective and streamlined method for producing electrochemical sensors, overcoming the challenges associated with material selection, complex fabrication processes, and reproducibility issues. This study introduces an innovative approach utilizing a dual-printer setup to simplify the manufacturing of sensor electrodes. A critical enhancement in this process is the surface modification with reduced graphene oxide (rGO), which not only improves the electrochemical characteristics but also induces a wrinkled structure on the 3D printed surface. These wrinkles significantly increase the surface area, directly boosting the electrode’s electrochemical performance. Comprehensive characterization of the electrode surfaces, both before and after rGO modification, demonstrates a substantial increase in sensitivity, with a fortyfold improvement observed in hydrogen peroxide (H2O2) amperometric measurements. This breakthrough paves the way for advanced applications in 3D printed electrochemical sensors.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced graphene oxide-modified electrodes via fused deposition modeling 3D printing for hydrogen peroxide sensor\",\"authors\":\"Yan Dou, Rui Dai, Haofan Sun, Kun Bi, Xin Zhao and Qiong Nian\",\"doi\":\"10.1088/2053-1583/ad6910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fused deposition modeling 3D printing provides a cost-effective and streamlined method for producing electrochemical sensors, overcoming the challenges associated with material selection, complex fabrication processes, and reproducibility issues. This study introduces an innovative approach utilizing a dual-printer setup to simplify the manufacturing of sensor electrodes. A critical enhancement in this process is the surface modification with reduced graphene oxide (rGO), which not only improves the electrochemical characteristics but also induces a wrinkled structure on the 3D printed surface. These wrinkles significantly increase the surface area, directly boosting the electrode’s electrochemical performance. Comprehensive characterization of the electrode surfaces, both before and after rGO modification, demonstrates a substantial increase in sensitivity, with a fortyfold improvement observed in hydrogen peroxide (H2O2) amperometric measurements. This breakthrough paves the way for advanced applications in 3D printed electrochemical sensors.\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad6910\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad6910","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

熔融沉积建模三维打印技术为生产电化学传感器提供了一种经济高效的简化方法,克服了与材料选择、复杂制造工艺和可重复性问题相关的挑战。本研究介绍了一种利用双打印机设置简化传感器电极制造的创新方法。该工艺的一个关键改进是使用还原氧化石墨烯(rGO)进行表面改性,这不仅能改善电化学特性,还能在 3D 打印表面形成褶皱结构。这些皱纹大大增加了表面积,直接提高了电极的电化学性能。对电极表面进行的全面表征(包括 rGO 修饰前后)表明,电极的灵敏度大幅提高,过氧化氢(H2O2)安培测量的灵敏度提高了 40 倍。这一突破为 3D 打印电化学传感器的先进应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced graphene oxide-modified electrodes via fused deposition modeling 3D printing for hydrogen peroxide sensor
Fused deposition modeling 3D printing provides a cost-effective and streamlined method for producing electrochemical sensors, overcoming the challenges associated with material selection, complex fabrication processes, and reproducibility issues. This study introduces an innovative approach utilizing a dual-printer setup to simplify the manufacturing of sensor electrodes. A critical enhancement in this process is the surface modification with reduced graphene oxide (rGO), which not only improves the electrochemical characteristics but also induces a wrinkled structure on the 3D printed surface. These wrinkles significantly increase the surface area, directly boosting the electrode’s electrochemical performance. Comprehensive characterization of the electrode surfaces, both before and after rGO modification, demonstrates a substantial increase in sensitivity, with a fortyfold improvement observed in hydrogen peroxide (H2O2) amperometric measurements. This breakthrough paves the way for advanced applications in 3D printed electrochemical sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信