{"title":"弯曲光波导特征值问题的数学分析","authors":"Rakesh Kumar and Kirankumar R Hiremath","doi":"10.1088/1751-8121/ad6aaf","DOIUrl":null,"url":null,"abstract":"This work investigates a mathematical model of the propagation of lightwaves in bent optical waveguides. This modeling leads to a non-self-adjoint eigenvalue problem for differential operator defined on the unbounded domain. Through detailed analysis, a relationship between the real and imaginary parts of the complex-valued propagation constants was constructed. Using this relation, it is found that the real and imaginary parts of the propagation constants are bounded, meaning they are limited within certain region in the complex plane. The orthogonality of these bent modes is also proved. By the asymptotic analysis of these modes, it is proved that as the behavior of the eigenfunctions is proportional to","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical analysis of bent optical waveguide eigenvalue problem\",\"authors\":\"Rakesh Kumar and Kirankumar R Hiremath\",\"doi\":\"10.1088/1751-8121/ad6aaf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates a mathematical model of the propagation of lightwaves in bent optical waveguides. This modeling leads to a non-self-adjoint eigenvalue problem for differential operator defined on the unbounded domain. Through detailed analysis, a relationship between the real and imaginary parts of the complex-valued propagation constants was constructed. Using this relation, it is found that the real and imaginary parts of the propagation constants are bounded, meaning they are limited within certain region in the complex plane. The orthogonality of these bent modes is also proved. By the asymptotic analysis of these modes, it is proved that as the behavior of the eigenfunctions is proportional to\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad6aaf\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6aaf","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Mathematical analysis of bent optical waveguide eigenvalue problem
This work investigates a mathematical model of the propagation of lightwaves in bent optical waveguides. This modeling leads to a non-self-adjoint eigenvalue problem for differential operator defined on the unbounded domain. Through detailed analysis, a relationship between the real and imaginary parts of the complex-valued propagation constants was constructed. Using this relation, it is found that the real and imaginary parts of the propagation constants are bounded, meaning they are limited within certain region in the complex plane. The orthogonality of these bent modes is also proved. By the asymptotic analysis of these modes, it is proved that as the behavior of the eigenfunctions is proportional to
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.