MIDI-to-Tab:通过掩码语言建模进行吉他谱推理

Drew Edwards, Xavier Riley, Pedro Sarmento, Simon Dixon
{"title":"MIDI-to-Tab:通过掩码语言建模进行吉他谱推理","authors":"Drew Edwards, Xavier Riley, Pedro Sarmento, Simon Dixon","doi":"arxiv-2408.05024","DOIUrl":null,"url":null,"abstract":"Guitar tablatures enrich the structure of traditional music notation by\nassigning each note to a string and fret of a guitar in a particular tuning,\nindicating precisely where to play the note on the instrument. The problem of\ngenerating tablature from a symbolic music representation involves inferring\nthis string and fret assignment per note across an entire composition or\nperformance. On the guitar, multiple string-fret assignments are possible for\nmost pitches, which leads to a large combinatorial space that prevents\nexhaustive search approaches. Most modern methods use constraint-based dynamic\nprogramming to minimize some cost function (e.g.\\ hand position movement). In\nthis work, we introduce a novel deep learning solution to symbolic guitar\ntablature estimation. We train an encoder-decoder Transformer model in a masked\nlanguage modeling paradigm to assign notes to strings. The model is first\npre-trained on DadaGP, a dataset of over 25K tablatures, and then fine-tuned on\na curated set of professionally transcribed guitar performances. Given the\nsubjective nature of assessing tablature quality, we conduct a user study\namongst guitarists, wherein we ask participants to rate the playability of\nmultiple versions of tablature for the same four-bar excerpt. The results\nindicate our system significantly outperforms competing algorithms.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIDI-to-Tab: Guitar Tablature Inference via Masked Language Modeling\",\"authors\":\"Drew Edwards, Xavier Riley, Pedro Sarmento, Simon Dixon\",\"doi\":\"arxiv-2408.05024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Guitar tablatures enrich the structure of traditional music notation by\\nassigning each note to a string and fret of a guitar in a particular tuning,\\nindicating precisely where to play the note on the instrument. The problem of\\ngenerating tablature from a symbolic music representation involves inferring\\nthis string and fret assignment per note across an entire composition or\\nperformance. On the guitar, multiple string-fret assignments are possible for\\nmost pitches, which leads to a large combinatorial space that prevents\\nexhaustive search approaches. Most modern methods use constraint-based dynamic\\nprogramming to minimize some cost function (e.g.\\\\ hand position movement). In\\nthis work, we introduce a novel deep learning solution to symbolic guitar\\ntablature estimation. We train an encoder-decoder Transformer model in a masked\\nlanguage modeling paradigm to assign notes to strings. The model is first\\npre-trained on DadaGP, a dataset of over 25K tablatures, and then fine-tuned on\\na curated set of professionally transcribed guitar performances. Given the\\nsubjective nature of assessing tablature quality, we conduct a user study\\namongst guitarists, wherein we ask participants to rate the playability of\\nmultiple versions of tablature for the same four-bar excerpt. The results\\nindicate our system significantly outperforms competing algorithms.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

吉他谱丰富了传统音乐记谱法的结构,它将每个音符分配到特定调式的吉他弦和音格上,并精确地指出该音符在乐器上的演奏位置。从符号音乐表示法生成音谱的问题涉及推断整个作品或演奏中每个音符的弦和音格分配。在吉他上,大多数音高都可能有多个琴弦-音格分配,这就导致了一个巨大的组合空间,无法使用穷举搜索方法。大多数现代方法都使用基于约束的动态编程来最小化某些成本函数(例如:手的位置移动)。在这项工作中,我们引入了一种新颖的深度学习解决方案来进行符号吉他声调估算。我们在掩码语言建模范式中训练了一个编码器-解码器转换器模型,以便为字符串分配音符。该模型首先在 DadaGP(一个包含超过 25K 个吉他谱的数据集)上进行预训练,然后在一组经过精心策划的专业吉他演奏转录集上进行微调。考虑到评估制表法质量的主观性,我们在吉他手中进行了用户研究,要求参与者对同一四小节节选的多个制表法版本的可演奏性进行评分。结果表明,我们的系统明显优于竞争算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIDI-to-Tab: Guitar Tablature Inference via Masked Language Modeling
Guitar tablatures enrich the structure of traditional music notation by assigning each note to a string and fret of a guitar in a particular tuning, indicating precisely where to play the note on the instrument. The problem of generating tablature from a symbolic music representation involves inferring this string and fret assignment per note across an entire composition or performance. On the guitar, multiple string-fret assignments are possible for most pitches, which leads to a large combinatorial space that prevents exhaustive search approaches. Most modern methods use constraint-based dynamic programming to minimize some cost function (e.g.\ hand position movement). In this work, we introduce a novel deep learning solution to symbolic guitar tablature estimation. We train an encoder-decoder Transformer model in a masked language modeling paradigm to assign notes to strings. The model is first pre-trained on DadaGP, a dataset of over 25K tablatures, and then fine-tuned on a curated set of professionally transcribed guitar performances. Given the subjective nature of assessing tablature quality, we conduct a user study amongst guitarists, wherein we ask participants to rate the playability of multiple versions of tablature for the same four-bar excerpt. The results indicate our system significantly outperforms competing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信