一般半马尔丁格尔市场中二次均值方差均衡和线性均值方差均衡的存在性和唯一性

Christoph Czichowsky, Martin Herdegen, David Martins
{"title":"一般半马尔丁格尔市场中二次均值方差均衡和线性均值方差均衡的存在性和唯一性","authors":"Christoph Czichowsky, Martin Herdegen, David Martins","doi":"arxiv-2408.03134","DOIUrl":null,"url":null,"abstract":"We revisit the classical topic of quadratic and linear mean-variance\nequilibria with both financial and real assets. The novelty of our results is\nthat they are the first allowing for equilibrium prices driven by general\nsemimartingales and hold in discrete as well as continuous time. For agents\nwith quadratic utility functions, we provide necessary and sufficient\nconditions for the existence and uniqueness of equilibria. We complement our\nanalysis by providing explicit examples showing non-uniqueness or non-existence\nof equilibria. We then study the more difficult case of linear mean-variance\npreferences. We first show that under mild assumptions, a linear mean-variance\nequilibrium corresponds to a quadratic equilibrium (for different preference\nparameters). We then use this link to study a fixed-point problem that\nestablishes existence (and uniqueness in a suitable class) of linear\nmean-variance equilibria. Our results rely on fine properties of dynamic\nmean-variance hedging in general semimartingale markets.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness of quadratic and linear mean-variance equilibria in general semimartingale markets\",\"authors\":\"Christoph Czichowsky, Martin Herdegen, David Martins\",\"doi\":\"arxiv-2408.03134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the classical topic of quadratic and linear mean-variance\\nequilibria with both financial and real assets. The novelty of our results is\\nthat they are the first allowing for equilibrium prices driven by general\\nsemimartingales and hold in discrete as well as continuous time. For agents\\nwith quadratic utility functions, we provide necessary and sufficient\\nconditions for the existence and uniqueness of equilibria. We complement our\\nanalysis by providing explicit examples showing non-uniqueness or non-existence\\nof equilibria. We then study the more difficult case of linear mean-variance\\npreferences. We first show that under mild assumptions, a linear mean-variance\\nequilibrium corresponds to a quadratic equilibrium (for different preference\\nparameters). We then use this link to study a fixed-point problem that\\nestablishes existence (and uniqueness in a suitable class) of linear\\nmean-variance equilibria. Our results rely on fine properties of dynamic\\nmean-variance hedging in general semimartingale markets.\",\"PeriodicalId\":501273,\"journal\":{\"name\":\"arXiv - ECON - General Economics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - General Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们重新探讨了金融资产和实物资产的二次均值方差均衡和线性均值方差均衡这一经典课题。我们结果的新颖之处在于,这些结果首次允许由一般边际模型驱动的均衡价格,并且在离散和连续时间内都成立。对于具有二次效用函数的代理人,我们为均衡的存在性和唯一性提供了必要条件和充分条件。我们通过提供明确的示例来补充我们的分析,这些示例显示了均衡的非唯一性或不存在性。然后,我们研究了线性均值-方差偏好这一更为困难的情况。我们首先证明,在温和的假设条件下,线性均值方差均衡对应于二次均衡(对于不同的偏好参数)。然后,我们利用这一联系研究了一个定点问题,该问题证明了线性均值方差均衡的存在性(以及在适当类别中的唯一性)。我们的结果依赖于一般半鞅市场中动态均值方差对冲的精细特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness of quadratic and linear mean-variance equilibria in general semimartingale markets
We revisit the classical topic of quadratic and linear mean-variance equilibria with both financial and real assets. The novelty of our results is that they are the first allowing for equilibrium prices driven by general semimartingales and hold in discrete as well as continuous time. For agents with quadratic utility functions, we provide necessary and sufficient conditions for the existence and uniqueness of equilibria. We complement our analysis by providing explicit examples showing non-uniqueness or non-existence of equilibria. We then study the more difficult case of linear mean-variance preferences. We first show that under mild assumptions, a linear mean-variance equilibrium corresponds to a quadratic equilibrium (for different preference parameters). We then use this link to study a fixed-point problem that establishes existence (and uniqueness in a suitable class) of linear mean-variance equilibria. Our results rely on fine properties of dynamic mean-variance hedging in general semimartingale markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信