{"title":"在 $$\\mathbb {R}^n\\rtimes \\textrm{SL}_2(\\mathbb {R})$$ 中的网格","authors":"M. M. Radhika, Sandip Singh","doi":"10.1007/s00031-024-09874-z","DOIUrl":null,"url":null,"abstract":"<p>We determine the existence of cocompact lattices in groups of the form <span>\\(\\textrm{V}\\rtimes \\textrm{SL}_2(\\mathbb {R})\\)</span>, where <span>\\(\\textrm{V}\\)</span> is a finite dimensional real representation of <span>\\(\\textrm{SL}_2(\\mathbb {R})\\)</span>. It turns out that the answer depends on the parity of <span>\\(\\dim (\\textrm{V})\\)</span> when the representation is irreducible.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattices in $$\\\\mathbb {R}^n\\\\rtimes \\\\textrm{SL}_2(\\\\mathbb {R})$$\",\"authors\":\"M. M. Radhika, Sandip Singh\",\"doi\":\"10.1007/s00031-024-09874-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We determine the existence of cocompact lattices in groups of the form <span>\\\\(\\\\textrm{V}\\\\rtimes \\\\textrm{SL}_2(\\\\mathbb {R})\\\\)</span>, where <span>\\\\(\\\\textrm{V}\\\\)</span> is a finite dimensional real representation of <span>\\\\(\\\\textrm{SL}_2(\\\\mathbb {R})\\\\)</span>. It turns out that the answer depends on the parity of <span>\\\\(\\\\dim (\\\\textrm{V})\\\\)</span> when the representation is irreducible.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09874-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09874-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lattices in $$\mathbb {R}^n\rtimes \textrm{SL}_2(\mathbb {R})$$
We determine the existence of cocompact lattices in groups of the form \(\textrm{V}\rtimes \textrm{SL}_2(\mathbb {R})\), where \(\textrm{V}\) is a finite dimensional real representation of \(\textrm{SL}_2(\mathbb {R})\). It turns out that the answer depends on the parity of \(\dim (\textrm{V})\) when the representation is irreducible.