在 $$\mathbb {R}^n\rtimes \textrm{SL}_2(\mathbb {R})$$ 中的网格

Pub Date : 2024-08-07 DOI:10.1007/s00031-024-09874-z
M. M. Radhika, Sandip Singh
{"title":"在 $$\\mathbb {R}^n\\rtimes \\textrm{SL}_2(\\mathbb {R})$$ 中的网格","authors":"M. M. Radhika, Sandip Singh","doi":"10.1007/s00031-024-09874-z","DOIUrl":null,"url":null,"abstract":"<p>We determine the existence of cocompact lattices in groups of the form <span>\\(\\textrm{V}\\rtimes \\textrm{SL}_2(\\mathbb {R})\\)</span>, where <span>\\(\\textrm{V}\\)</span> is a finite dimensional real representation of <span>\\(\\textrm{SL}_2(\\mathbb {R})\\)</span>. It turns out that the answer depends on the parity of <span>\\(\\dim (\\textrm{V})\\)</span> when the representation is irreducible.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattices in $$\\\\mathbb {R}^n\\\\rtimes \\\\textrm{SL}_2(\\\\mathbb {R})$$\",\"authors\":\"M. M. Radhika, Sandip Singh\",\"doi\":\"10.1007/s00031-024-09874-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We determine the existence of cocompact lattices in groups of the form <span>\\\\(\\\\textrm{V}\\\\rtimes \\\\textrm{SL}_2(\\\\mathbb {R})\\\\)</span>, where <span>\\\\(\\\\textrm{V}\\\\)</span> is a finite dimensional real representation of <span>\\\\(\\\\textrm{SL}_2(\\\\mathbb {R})\\\\)</span>. It turns out that the answer depends on the parity of <span>\\\\(\\\\dim (\\\\textrm{V})\\\\)</span> when the representation is irreducible.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09874-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09874-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了在\(\textrm{V}\rtimes \textrm{SL}_2(\mathbb {R})\)形式的群中cocompact网格的存在性,其中\(\textrm{V}\)是\(\textrm{SL}_2(\mathbb {R})\)的有限维实数表示。事实证明,当表示是不可还原的时候,答案取决于 \(\dim (\textrm{V})\) 的奇偶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lattices in $$\mathbb {R}^n\rtimes \textrm{SL}_2(\mathbb {R})$$

分享
查看原文
Lattices in $$\mathbb {R}^n\rtimes \textrm{SL}_2(\mathbb {R})$$

We determine the existence of cocompact lattices in groups of the form \(\textrm{V}\rtimes \textrm{SL}_2(\mathbb {R})\), where \(\textrm{V}\) is a finite dimensional real representation of \(\textrm{SL}_2(\mathbb {R})\). It turns out that the answer depends on the parity of \(\dim (\textrm{V})\) when the representation is irreducible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信