完全负引信矩图的有理奇异性

Pub Date : 2024-08-09 DOI:10.1007/s00031-024-09873-0
Tanguy Vernet
{"title":"完全负引信矩图的有理奇异性","authors":"Tanguy Vernet","doi":"10.1007/s00031-024-09873-0","DOIUrl":null,"url":null,"abstract":"<p>We prove that the zero-fiber of the moment map of a totally negative quiver has rational singularities. Our proof consists in generalizing dimension bounds on jet spaces of this fiber, which were introduced by Budur. We also transfer the rational singularities property to other moduli spaces of objects in 2-Calabi-Yau categories, based on recent work of Davison. This has interesting arithmetic applications on quiver moment maps and moduli spaces of objects in 2-Calabi-Yau categories. First, we generalize results of Wyss on the asymptotic behaviour of counts of jets of quiver moment maps over finite fields. Moreover, we interpret the limit of counts of jets on a given moduli space as its <i>p</i>-adic volume under a canonical measure analogous to the measure built by Carocci, Orecchia and Wyss on certain moduli spaces of coherent sheaves.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Singularities for Moment Maps of Totally Negative Quivers\",\"authors\":\"Tanguy Vernet\",\"doi\":\"10.1007/s00031-024-09873-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the zero-fiber of the moment map of a totally negative quiver has rational singularities. Our proof consists in generalizing dimension bounds on jet spaces of this fiber, which were introduced by Budur. We also transfer the rational singularities property to other moduli spaces of objects in 2-Calabi-Yau categories, based on recent work of Davison. This has interesting arithmetic applications on quiver moment maps and moduli spaces of objects in 2-Calabi-Yau categories. First, we generalize results of Wyss on the asymptotic behaviour of counts of jets of quiver moment maps over finite fields. Moreover, we interpret the limit of counts of jets on a given moduli space as its <i>p</i>-adic volume under a canonical measure analogous to the measure built by Carocci, Orecchia and Wyss on certain moduli spaces of coherent sheaves.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09873-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09873-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了全负四维矩图的零纤维具有有理奇点。我们的证明包括推广布杜尔提出的关于该纤维的射流空间的维数边界。基于戴维森的最新研究成果,我们还将有理奇点性质转移到了 2-Calabi-Yau 范畴中对象的其他模空间。这在2-Calabi-Yau范畴中的quiver矩映射和对象模空间上有着有趣的算术应用。首先,我们概括了 Wyss 关于有限域上四元矩映射的喷流计数渐近行为的结果。此外,我们将给定模空间上喷流计数的极限解释为其 p-adic体积下的典范度量,类似于 Carocci、Orecchia 和 Wyss 在某些相干剪切的模空间上建立的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rational Singularities for Moment Maps of Totally Negative Quivers

We prove that the zero-fiber of the moment map of a totally negative quiver has rational singularities. Our proof consists in generalizing dimension bounds on jet spaces of this fiber, which were introduced by Budur. We also transfer the rational singularities property to other moduli spaces of objects in 2-Calabi-Yau categories, based on recent work of Davison. This has interesting arithmetic applications on quiver moment maps and moduli spaces of objects in 2-Calabi-Yau categories. First, we generalize results of Wyss on the asymptotic behaviour of counts of jets of quiver moment maps over finite fields. Moreover, we interpret the limit of counts of jets on a given moduli space as its p-adic volume under a canonical measure analogous to the measure built by Carocci, Orecchia and Wyss on certain moduli spaces of coherent sheaves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信