办公环境中数据驱动的高效占用检测及特征影响分析

Harrou Fouzi, Kini K. Ramakrishna, Muddu Madakyaru, Sun Ying
{"title":"办公环境中数据驱动的高效占用检测及特征影响分析","authors":"Harrou Fouzi, Kini K. Ramakrishna, Muddu Madakyaru, Sun Ying","doi":"10.1007/s41870-024-02125-0","DOIUrl":null,"url":null,"abstract":"<p>Occupancy detection is crucial in optimizing building energy efficiency and enhancing occupant comfort. This study introduces an innovative data-driven approach for accurate occupancy detection in an office room environment. Specifically, the methodology combines the advantages of Independent Component Analysis (ICA) to extract essential features from multivariate data and Kantorovitch distance (KD)-based schemes for detection sensitivity. The KD scheme’s detection threshold is computed nonparametrically using kernel density estimation to enhance the sensitivity of occupancy detection. The efficacy of this strategy is evaluated utilizing publicly available data recorded during winter in Mons, Belgium, capturing vital environmental parameters such as temperature, humidity, light, and CO<span>\\(_{2}\\)</span> levels through specialized sensors. Results demonstrate that the ICA-KD approach achieves an averaged accuracy of 98.355%, surpassing conventional approaches like Principal Component Analysis (PCA)-based, ICA-based, and other state-of-the-art methods. Additionally, the study uses Shapley Additive exPlanations (SHAP) with XGBoost to explore the impact of input variables on occupancy detection, highlighting the influence of various factors under different testing conditions.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient data-driven occupancy detection in office environments and feature impact analysis\",\"authors\":\"Harrou Fouzi, Kini K. Ramakrishna, Muddu Madakyaru, Sun Ying\",\"doi\":\"10.1007/s41870-024-02125-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Occupancy detection is crucial in optimizing building energy efficiency and enhancing occupant comfort. This study introduces an innovative data-driven approach for accurate occupancy detection in an office room environment. Specifically, the methodology combines the advantages of Independent Component Analysis (ICA) to extract essential features from multivariate data and Kantorovitch distance (KD)-based schemes for detection sensitivity. The KD scheme’s detection threshold is computed nonparametrically using kernel density estimation to enhance the sensitivity of occupancy detection. The efficacy of this strategy is evaluated utilizing publicly available data recorded during winter in Mons, Belgium, capturing vital environmental parameters such as temperature, humidity, light, and CO<span>\\\\(_{2}\\\\)</span> levels through specialized sensors. Results demonstrate that the ICA-KD approach achieves an averaged accuracy of 98.355%, surpassing conventional approaches like Principal Component Analysis (PCA)-based, ICA-based, and other state-of-the-art methods. Additionally, the study uses Shapley Additive exPlanations (SHAP) with XGBoost to explore the impact of input variables on occupancy detection, highlighting the influence of various factors under different testing conditions.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02125-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02125-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

占用检测对于优化建筑能效和提高居住舒适度至关重要。本研究介绍了一种创新的数据驱动方法,用于准确检测办公用房环境中的占用情况。具体来说,该方法结合了独立分量分析(ICA)从多元数据中提取基本特征的优势和基于康托洛维奇距离(KD)的检测灵敏度方案的优势。KD 方案的检测阈值使用核密度估计进行非参数计算,以提高占用率检测的灵敏度。我们利用比利时蒙斯冬季记录的公开数据评估了这一策略的功效,这些数据通过专门的传感器捕获了温度、湿度、光照和 CO\(_{2}\) 水平等重要环境参数。结果表明,ICA-KD 方法的平均准确率达到 98.355%,超过了基于主成分分析 (PCA)、基于 ICA 和其他最先进方法的传统方法。此外,该研究还使用 Shapley Additive exPlanations (SHAP) 和 XGBoost 探索了输入变量对占用检测的影响,突出了不同测试条件下各种因素的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient data-driven occupancy detection in office environments and feature impact analysis

Efficient data-driven occupancy detection in office environments and feature impact analysis

Occupancy detection is crucial in optimizing building energy efficiency and enhancing occupant comfort. This study introduces an innovative data-driven approach for accurate occupancy detection in an office room environment. Specifically, the methodology combines the advantages of Independent Component Analysis (ICA) to extract essential features from multivariate data and Kantorovitch distance (KD)-based schemes for detection sensitivity. The KD scheme’s detection threshold is computed nonparametrically using kernel density estimation to enhance the sensitivity of occupancy detection. The efficacy of this strategy is evaluated utilizing publicly available data recorded during winter in Mons, Belgium, capturing vital environmental parameters such as temperature, humidity, light, and CO\(_{2}\) levels through specialized sensors. Results demonstrate that the ICA-KD approach achieves an averaged accuracy of 98.355%, surpassing conventional approaches like Principal Component Analysis (PCA)-based, ICA-based, and other state-of-the-art methods. Additionally, the study uses Shapley Additive exPlanations (SHAP) with XGBoost to explore the impact of input variables on occupancy detection, highlighting the influence of various factors under different testing conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信