由气泡破裂产生的粘弹性沃辛顿射流(&&液滴

Ayush K. Dixit, Alexandros Oratis, Konstantinos Zinelis, Detlef Lohse, Vatsal Sanjay
{"title":"由气泡破裂产生的粘弹性沃辛顿射流(&&液滴","authors":"Ayush K. Dixit, Alexandros Oratis, Konstantinos Zinelis, Detlef Lohse, Vatsal Sanjay","doi":"arxiv-2408.05089","DOIUrl":null,"url":null,"abstract":"Bubble bursting and subsequent collapse of the open cavity at free surfaces\nof contaminated liquids can generate aerosol droplets, facilitating pathogen\ntransport. After film rupture, capillary waves focus at the cavity base,\npotentially generating fast Worthington jets that are responsible for ejecting\nthe droplets away from the source. While extensively studied for Newtonian\nfluids, the influence of non-Newtonian rheology on this process remains poorly\nunderstood. Here, we employ direct numerical simulations to investigate the\nbubble cavity collapse in viscoelastic media, such as polymeric liquids,\nexamining how their elastic modulus $G$ and their relaxation time $\\lambda$\naffect jet and droplet formation. We show that the viscoelastic liquids yield\nNewtonian-like behavior as either parameter $G$ or $\\lambda$ approaches zero,\nwhile increasing them suppresses jet formation due to elastic resistance to\nelongational flows. Intriguingly, for some cases with intermediate values of\n$G$ and $\\lambda$, smaller droplets are produced compared to Newtonian fluids,\npotentially enhancing aerosol dispersal. By mapping the phase space spanned by\nthe elastocapillary number (dimensionless $G$) and the Deborah number\n(dimensionless $\\lambda$), we reveal three distinct flow regimes: (i) jets\nforming droplets, (ii) jets without droplet formation, and (iii) absence of jet\nformation. Our results elucidate the mechanisms underlying aerosol suppression\nversus fine spray formation in polymeric liquids, with implications for\npathogen transmission and industrial processes involving viscoelastic fluids.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscoelastic Worthington jets \\\\& droplets produced by bursting bubbles\",\"authors\":\"Ayush K. Dixit, Alexandros Oratis, Konstantinos Zinelis, Detlef Lohse, Vatsal Sanjay\",\"doi\":\"arxiv-2408.05089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bubble bursting and subsequent collapse of the open cavity at free surfaces\\nof contaminated liquids can generate aerosol droplets, facilitating pathogen\\ntransport. After film rupture, capillary waves focus at the cavity base,\\npotentially generating fast Worthington jets that are responsible for ejecting\\nthe droplets away from the source. While extensively studied for Newtonian\\nfluids, the influence of non-Newtonian rheology on this process remains poorly\\nunderstood. Here, we employ direct numerical simulations to investigate the\\nbubble cavity collapse in viscoelastic media, such as polymeric liquids,\\nexamining how their elastic modulus $G$ and their relaxation time $\\\\lambda$\\naffect jet and droplet formation. We show that the viscoelastic liquids yield\\nNewtonian-like behavior as either parameter $G$ or $\\\\lambda$ approaches zero,\\nwhile increasing them suppresses jet formation due to elastic resistance to\\nelongational flows. Intriguingly, for some cases with intermediate values of\\n$G$ and $\\\\lambda$, smaller droplets are produced compared to Newtonian fluids,\\npotentially enhancing aerosol dispersal. By mapping the phase space spanned by\\nthe elastocapillary number (dimensionless $G$) and the Deborah number\\n(dimensionless $\\\\lambda$), we reveal three distinct flow regimes: (i) jets\\nforming droplets, (ii) jets without droplet formation, and (iii) absence of jet\\nformation. Our results elucidate the mechanisms underlying aerosol suppression\\nversus fine spray formation in polymeric liquids, with implications for\\npathogen transmission and industrial processes involving viscoelastic fluids.\",\"PeriodicalId\":501125,\"journal\":{\"name\":\"arXiv - PHYS - Fluid Dynamics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受污染液体自由表面的气泡破裂和随后开放空腔的坍塌会产生气溶胶液滴,从而促进病原体的传播。薄膜破裂后,毛细管波集中在空腔底部,有可能产生快速的沃辛顿射流,将液滴从源头喷射出去。虽然对牛顿流体进行了广泛研究,但对非牛顿流体流变对这一过程的影响仍然知之甚少。在此,我们采用直接数值模拟来研究粘弹性介质(如聚合物液体)中的气泡空腔坍塌,考察其弹性模量 $G$ 及其弛豫时间 $\lambda$ 如何影响射流和液滴的形成。我们的研究表明,当粘弹性液体的参数$G或$lambda趋近于零时,粘弹性液体会产生类似牛顿的行为,而增加这两个参数则会抑制射流的形成,因为弹性阻力会影响长向流动。有趣的是,在某些情况下,当参数$G$和$\lambda$处于中间值时,会产生比牛顿流体更小的液滴,这可能会促进气溶胶的分散。通过绘制弹性毛细管数(无量纲$G$)和德博拉数(无量纲$\lambda$)所跨相空间的图谱,我们揭示了三种不同的流态:(i) 喷射形成液滴,(ii) 喷射不形成液滴,(iii) 不形成喷流。我们的研究结果阐明了聚合物液体中气溶胶抑制和细喷雾形成的基本机制,对涉及粘弹性液体的病原体传播和工业过程具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Viscoelastic Worthington jets \& droplets produced by bursting bubbles
Bubble bursting and subsequent collapse of the open cavity at free surfaces of contaminated liquids can generate aerosol droplets, facilitating pathogen transport. After film rupture, capillary waves focus at the cavity base, potentially generating fast Worthington jets that are responsible for ejecting the droplets away from the source. While extensively studied for Newtonian fluids, the influence of non-Newtonian rheology on this process remains poorly understood. Here, we employ direct numerical simulations to investigate the bubble cavity collapse in viscoelastic media, such as polymeric liquids, examining how their elastic modulus $G$ and their relaxation time $\lambda$ affect jet and droplet formation. We show that the viscoelastic liquids yield Newtonian-like behavior as either parameter $G$ or $\lambda$ approaches zero, while increasing them suppresses jet formation due to elastic resistance to elongational flows. Intriguingly, for some cases with intermediate values of $G$ and $\lambda$, smaller droplets are produced compared to Newtonian fluids, potentially enhancing aerosol dispersal. By mapping the phase space spanned by the elastocapillary number (dimensionless $G$) and the Deborah number (dimensionless $\lambda$), we reveal three distinct flow regimes: (i) jets forming droplets, (ii) jets without droplet formation, and (iii) absence of jet formation. Our results elucidate the mechanisms underlying aerosol suppression versus fine spray formation in polymeric liquids, with implications for pathogen transmission and industrial processes involving viscoelastic fluids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信