有限维模型的矢量值过程的极值

IF 1.5 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Hui Xu, Mircea D. Grigoriu
{"title":"有限维模型的矢量值过程的极值","authors":"Hui Xu, Mircea D. Grigoriu","doi":"10.1615/int.j.uncertaintyquantification.2024051826","DOIUrl":null,"url":null,"abstract":"Finite dimensional (FD) models, i.e., deterministic functions of time/space and finite sets of random variables, are constructed for target vector-valued random processes/fields. They are required to have two properties. First, standard Monte Carlo algorithms can be used to generate their samples, referred to as FD samples. Second, under some conditions specified by several theorems, FD samples can be used to estimate distributions of extremes and other functionals of target random functions. Numerical illustrations involving two-dimensional random processes and apparent properties of random microstructures are presented to illustrate the implementation of FD models for these stochastic problems and show that they are accurate if the conditions of our theorems are satisfied.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"59 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremes of vector-valued processes by finite dimensional models\",\"authors\":\"Hui Xu, Mircea D. Grigoriu\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2024051826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite dimensional (FD) models, i.e., deterministic functions of time/space and finite sets of random variables, are constructed for target vector-valued random processes/fields. They are required to have two properties. First, standard Monte Carlo algorithms can be used to generate their samples, referred to as FD samples. Second, under some conditions specified by several theorems, FD samples can be used to estimate distributions of extremes and other functionals of target random functions. Numerical illustrations involving two-dimensional random processes and apparent properties of random microstructures are presented to illustrate the implementation of FD models for these stochastic problems and show that they are accurate if the conditions of our theorems are satisfied.\",\"PeriodicalId\":48814,\"journal\":{\"name\":\"International Journal for Uncertainty Quantification\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051826\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051826","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有限维(FD)模型,即时间/空间的确定性函数和随机变量的有限集,是为目标矢量值随机过程/场构建的。它们需要具备两个特性。首先,可使用标准蒙特卡罗算法生成样本,称为 FD 样本。其次,在一些定理规定的条件下,FD 样本可用于估计目标随机函数的极值分布和其他函数分布。我们给出了涉及二维随机过程和随机微结构明显特性的数值示例,以说明这些随机问题的 FD 模型的实现,并表明如果满足我们定理的条件,这些模型是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremes of vector-valued processes by finite dimensional models
Finite dimensional (FD) models, i.e., deterministic functions of time/space and finite sets of random variables, are constructed for target vector-valued random processes/fields. They are required to have two properties. First, standard Monte Carlo algorithms can be used to generate their samples, referred to as FD samples. Second, under some conditions specified by several theorems, FD samples can be used to estimate distributions of extremes and other functionals of target random functions. Numerical illustrations involving two-dimensional random processes and apparent properties of random microstructures are presented to illustrate the implementation of FD models for these stochastic problems and show that they are accurate if the conditions of our theorems are satisfied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Uncertainty Quantification
International Journal for Uncertainty Quantification ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.60
自引率
5.90%
发文量
28
期刊介绍: The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信