论棋盘式可着色虚拟结的行列式

Tomoaki Hatano, Yuta Nozaki
{"title":"论棋盘式可着色虚拟结的行列式","authors":"Tomoaki Hatano, Yuta Nozaki","doi":"arxiv-2408.01891","DOIUrl":null,"url":null,"abstract":"For classical knots, it is well known that their determinants mod $8$ are\nclassified by the Arf invariant. Boden and Karimi introduced a determinant of\ncheckerboard colorable virtual knots. We prove that their determinant mod $8$\nis classified by the coefficient of $z^2$ in the ascending polynomial which is\nan extension of the Conway polynomial for classical knots.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On determinant of checkerboard colorable virtual knots\",\"authors\":\"Tomoaki Hatano, Yuta Nozaki\",\"doi\":\"arxiv-2408.01891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For classical knots, it is well known that their determinants mod $8$ are\\nclassified by the Arf invariant. Boden and Karimi introduced a determinant of\\ncheckerboard colorable virtual knots. We prove that their determinant mod $8$\\nis classified by the coefficient of $z^2$ in the ascending polynomial which is\\nan extension of the Conway polynomial for classical knots.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,古典结的行列式 mod $8$ 是由 Arf 不变量分类的。博登和卡里米引入了棋盘式可着色虚拟结的行列式。我们证明了它们的行列式 mod $8$ 是由上升多项式中 $z^2$ 的系数分类的,而上升多项式是经典结的康威多项式的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On determinant of checkerboard colorable virtual knots
For classical knots, it is well known that their determinants mod $8$ are classified by the Arf invariant. Boden and Karimi introduced a determinant of checkerboard colorable virtual knots. We prove that their determinant mod $8$ is classified by the coefficient of $z^2$ in the ascending polynomial which is an extension of the Conway polynomial for classical knots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信