双支盖的修正项和沉浸曲线的对称性

Jonathan Hanselman, Marco Marengon, Biji Wong
{"title":"双支盖的修正项和沉浸曲线的对称性","authors":"Jonathan Hanselman, Marco Marengon, Biji Wong","doi":"arxiv-2408.02857","DOIUrl":null,"url":null,"abstract":"We use the immersed curves description of bordered Floer homology to study\n$d$-invariants of double branched covers $\\Sigma_2(L)$ of arborescent links $L\n\\subset S^3$. We define a new invariant $\\Delta_{sym}$ of bordered\n$\\mathbb{Z}_2$-homology solid tori from an involution of the associated\nimmersed curves and relate it to both the $d$-invariants and the\nNeumann-Siebenmann $\\bar\\mu$-invariants of certain fillings. We deduce that if\n$L$ is a 2-component arborescent link and $\\Sigma_2(L)$ is an L-space, then the\nspin $d$-invariants of $\\Sigma_2(L)$ are determined by the signatures of $L$.\nBy a separate argument, we show that the same relationship holds when $L$ is a\n2-component link that admits a certain symmetry.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction terms of double branched covers and symmetries of immersed curves\",\"authors\":\"Jonathan Hanselman, Marco Marengon, Biji Wong\",\"doi\":\"arxiv-2408.02857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the immersed curves description of bordered Floer homology to study\\n$d$-invariants of double branched covers $\\\\Sigma_2(L)$ of arborescent links $L\\n\\\\subset S^3$. We define a new invariant $\\\\Delta_{sym}$ of bordered\\n$\\\\mathbb{Z}_2$-homology solid tori from an involution of the associated\\nimmersed curves and relate it to both the $d$-invariants and the\\nNeumann-Siebenmann $\\\\bar\\\\mu$-invariants of certain fillings. We deduce that if\\n$L$ is a 2-component arborescent link and $\\\\Sigma_2(L)$ is an L-space, then the\\nspin $d$-invariants of $\\\\Sigma_2(L)$ are determined by the signatures of $L$.\\nBy a separate argument, we show that the same relationship holds when $L$ is a\\n2-component link that admits a certain symmetry.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用有边弗洛尔同调的沉浸曲线描述来研究树枝状链接 $L (子集 S^3$ )的双枝盖 $\Sigma_2(L)$ 的 d$ 不变量。我们定义了一个新的$Delta_{sym}$边$mathbb{Z}_2$-homology实体环的不变量,这个不变量来自相关immersed曲线的内卷,并将其与某些填充的$d$不变量和Neumann-Siebenmann $\bar\mu$ 不变量相关联。我们推导出,如果$L$是一个2分量的新月链接,并且$\Sigma_2(L)$是一个L空间,那么$\Sigma_2(L)$的自旋$d$-不变式是由$L$的签名决定的。通过一个单独的论证,我们证明了当$L$是一个允许某种对称性的2分量链接时,同样的关系成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correction terms of double branched covers and symmetries of immersed curves
We use the immersed curves description of bordered Floer homology to study $d$-invariants of double branched covers $\Sigma_2(L)$ of arborescent links $L \subset S^3$. We define a new invariant $\Delta_{sym}$ of bordered $\mathbb{Z}_2$-homology solid tori from an involution of the associated immersed curves and relate it to both the $d$-invariants and the Neumann-Siebenmann $\bar\mu$-invariants of certain fillings. We deduce that if $L$ is a 2-component arborescent link and $\Sigma_2(L)$ is an L-space, then the spin $d$-invariants of $\Sigma_2(L)$ are determined by the signatures of $L$. By a separate argument, we show that the same relationship holds when $L$ is a 2-component link that admits a certain symmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信