关于具有有限同调秩和的紧凑复曲面

Indranil Biswas, Buddhadev Hajra
{"title":"关于具有有限同调秩和的紧凑复曲面","authors":"Indranil Biswas, Buddhadev Hajra","doi":"arxiv-2408.04558","DOIUrl":null,"url":null,"abstract":"A topological space (not necessarily simply connected) is said to have finite\nhomotopy rank-sum if the sum of the ranks of all higher homotopy groups (from\nthe second homotopy group onward) is finite. In this article, we characterize\nthe smooth compact complex Kaehler surfaces having finite homotopy rank-sum. We\nalso prove the Steinness of the universal cover of these surfaces assuming\nholomorphic convexity of the universal cover.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On compact complex surfaces with finite homotopy rank-sum\",\"authors\":\"Indranil Biswas, Buddhadev Hajra\",\"doi\":\"arxiv-2408.04558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A topological space (not necessarily simply connected) is said to have finite\\nhomotopy rank-sum if the sum of the ranks of all higher homotopy groups (from\\nthe second homotopy group onward) is finite. In this article, we characterize\\nthe smooth compact complex Kaehler surfaces having finite homotopy rank-sum. We\\nalso prove the Steinness of the universal cover of these surfaces assuming\\nholomorphic convexity of the universal cover.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果一个拓扑空间(不一定是简单连通的)的所有高同调群(从第二个同调群开始)的秩和都是有限的,那么这个空间就被称为具有有限同调秩和。在本文中,我们描述了具有有限同调秩和的光滑紧凑复开普勒曲面的特征。我们还证明了这些曲面的普遍盖的斯泰因性(假设普遍盖的凸性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On compact complex surfaces with finite homotopy rank-sum
A topological space (not necessarily simply connected) is said to have finite homotopy rank-sum if the sum of the ranks of all higher homotopy groups (from the second homotopy group onward) is finite. In this article, we characterize the smooth compact complex Kaehler surfaces having finite homotopy rank-sum. We also prove the Steinness of the universal cover of these surfaces assuming holomorphic convexity of the universal cover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信