结和链接的电组

Philipp Korablev
{"title":"结和链接的电组","authors":"Philipp Korablev","doi":"arxiv-2408.04510","DOIUrl":null,"url":null,"abstract":"In 2014 Andrey Perfiliev introduced the so-called electric invariant for\nnon-oriented knots. This invariant was motivated by using Kirchhoff's laws for\nthe dual graph of the knot diagram. Later, in 2020, Anastasiya Galkina\ngeneralised this invariant and defined the electric group for non-oriented\nknots. Both works were never written and published. In the present paper we\ndescribe a simple and general approach to the electric group for oriented knots\nand links. Each homomorphism from the electric group to an arbitrary finite\ngroup can be described by a proper colouring of the diagram. This colouring\nassigns an element of the group to each crossing of the diagram, and the proper\nconditions correspond to the areas of the diagram. In the second part of the\npaper we introduce tensor network invariants for coloured links. The idea of\nthese invariants is very close to quantum invariants for classical links.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric group for knots and links\",\"authors\":\"Philipp Korablev\",\"doi\":\"arxiv-2408.04510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2014 Andrey Perfiliev introduced the so-called electric invariant for\\nnon-oriented knots. This invariant was motivated by using Kirchhoff's laws for\\nthe dual graph of the knot diagram. Later, in 2020, Anastasiya Galkina\\ngeneralised this invariant and defined the electric group for non-oriented\\nknots. Both works were never written and published. In the present paper we\\ndescribe a simple and general approach to the electric group for oriented knots\\nand links. Each homomorphism from the electric group to an arbitrary finite\\ngroup can be described by a proper colouring of the diagram. This colouring\\nassigns an element of the group to each crossing of the diagram, and the proper\\nconditions correspond to the areas of the diagram. In the second part of the\\npaper we introduce tensor network invariants for coloured links. The idea of\\nthese invariants is very close to quantum invariants for classical links.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2014 年,安德烈-佩尔菲利耶夫(Andrey Perfiliev)提出了无取向结的所谓电不变量。这一不变量是通过对结图的对偶图使用基尔霍夫定律而产生的。之后,在 2020 年,阿纳斯塔西娅-加尔金(Anastasiya Galkinageneralised this invariant)对这一不变量进行了概括,并定义了无取向结的电群。这两部著作均未撰写出版。在本文中,我们描述了一种简单而通用的方法,即面向结和链接的电群组。从电群到任意有限群的每个同构都可以用图的适当着色来描述。这种着色为图的每个交叉点分配了一个群元素,而适当的条件与图的区域相对应。在论文的第二部分,我们介绍了彩色链接的张量网络不变式。这些不变式的思想与经典链路的量子不变式非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electric group for knots and links
In 2014 Andrey Perfiliev introduced the so-called electric invariant for non-oriented knots. This invariant was motivated by using Kirchhoff's laws for the dual graph of the knot diagram. Later, in 2020, Anastasiya Galkina generalised this invariant and defined the electric group for non-oriented knots. Both works were never written and published. In the present paper we describe a simple and general approach to the electric group for oriented knots and links. Each homomorphism from the electric group to an arbitrary finite group can be described by a proper colouring of the diagram. This colouring assigns an element of the group to each crossing of the diagram, and the proper conditions correspond to the areas of the diagram. In the second part of the paper we introduce tensor network invariants for coloured links. The idea of these invariants is very close to quantum invariants for classical links.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信