{"title":"用芬切尔-尼尔森坐标证明魏尔-彼得森对称形式的沃尔佩特公式的拓扑证明","authors":"Nariya Kawazumi","doi":"arxiv-2408.04937","DOIUrl":null,"url":null,"abstract":"We introduce a natural cell decomposition of a closed oriented surface\nassociated with a pants decomposition, and an explicit groupoid cocycle on the\ncell decomposition which represents each point of the Teichm\\\"uller space\n$\\mathcal{T}_g$. We call it the {\\it standard cocycle} of the point of\n$\\mathcal{T}_g$. As an application of the explicit description of the standard\ncocycle, we obtain a topological proof of Wolpert's formula for the\nWeil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates\nassociated with the pants decomposition.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A topological proof of Wolpert's formula for the Weil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates\",\"authors\":\"Nariya Kawazumi\",\"doi\":\"arxiv-2408.04937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a natural cell decomposition of a closed oriented surface\\nassociated with a pants decomposition, and an explicit groupoid cocycle on the\\ncell decomposition which represents each point of the Teichm\\\\\\\"uller space\\n$\\\\mathcal{T}_g$. We call it the {\\\\it standard cocycle} of the point of\\n$\\\\mathcal{T}_g$. As an application of the explicit description of the standard\\ncocycle, we obtain a topological proof of Wolpert's formula for the\\nWeil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates\\nassociated with the pants decomposition.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们引入了与裤子分解相关的封闭定向曲面的自然单元分解,以及单元分解上的显式群循环,它代表了 Teichm\"uller 空间$mathcal{T}_g$的每个点。我们称之为$\mathcal{T}_g$的点的{(it standard cocycle}}。作为对标准环的明确描述的一个应用,我们用与裤子分解相关的芬切尔-尼尔森坐标得到了沃尔佩特关于魏尔-彼得森交点形式公式的拓扑证明。
A topological proof of Wolpert's formula for the Weil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates
We introduce a natural cell decomposition of a closed oriented surface
associated with a pants decomposition, and an explicit groupoid cocycle on the
cell decomposition which represents each point of the Teichm\"uller space
$\mathcal{T}_g$. We call it the {\it standard cocycle} of the point of
$\mathcal{T}_g$. As an application of the explicit description of the standard
cocycle, we obtain a topological proof of Wolpert's formula for the
Weil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates
associated with the pants decomposition.