用芬切尔-尼尔森坐标证明魏尔-彼得森对称形式的沃尔佩特公式的拓扑证明

Nariya Kawazumi
{"title":"用芬切尔-尼尔森坐标证明魏尔-彼得森对称形式的沃尔佩特公式的拓扑证明","authors":"Nariya Kawazumi","doi":"arxiv-2408.04937","DOIUrl":null,"url":null,"abstract":"We introduce a natural cell decomposition of a closed oriented surface\nassociated with a pants decomposition, and an explicit groupoid cocycle on the\ncell decomposition which represents each point of the Teichm\\\"uller space\n$\\mathcal{T}_g$. We call it the {\\it standard cocycle} of the point of\n$\\mathcal{T}_g$. As an application of the explicit description of the standard\ncocycle, we obtain a topological proof of Wolpert's formula for the\nWeil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates\nassociated with the pants decomposition.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A topological proof of Wolpert's formula for the Weil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates\",\"authors\":\"Nariya Kawazumi\",\"doi\":\"arxiv-2408.04937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a natural cell decomposition of a closed oriented surface\\nassociated with a pants decomposition, and an explicit groupoid cocycle on the\\ncell decomposition which represents each point of the Teichm\\\\\\\"uller space\\n$\\\\mathcal{T}_g$. We call it the {\\\\it standard cocycle} of the point of\\n$\\\\mathcal{T}_g$. As an application of the explicit description of the standard\\ncocycle, we obtain a topological proof of Wolpert's formula for the\\nWeil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates\\nassociated with the pants decomposition.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了与裤子分解相关的封闭定向曲面的自然单元分解,以及单元分解上的显式群循环,它代表了 Teichm\"uller 空间$mathcal{T}_g$的每个点。我们称之为$\mathcal{T}_g$的点的{(it standard cocycle}}。作为对标准环的明确描述的一个应用,我们用与裤子分解相关的芬切尔-尼尔森坐标得到了沃尔佩特关于魏尔-彼得森交点形式公式的拓扑证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A topological proof of Wolpert's formula for the Weil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates
We introduce a natural cell decomposition of a closed oriented surface associated with a pants decomposition, and an explicit groupoid cocycle on the cell decomposition which represents each point of the Teichm\"uller space $\mathcal{T}_g$. We call it the {\it standard cocycle} of the point of $\mathcal{T}_g$. As an application of the explicit description of the standard cocycle, we obtain a topological proof of Wolpert's formula for the Weil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates associated with the pants decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信