具有每个尖顶截面的尖顶-横截4-网格

Jacopo Guoyi Chen, Edoardo Rizzi
{"title":"具有每个尖顶截面的尖顶-横截4-网格","authors":"Jacopo Guoyi Chen, Edoardo Rizzi","doi":"arxiv-2408.05080","DOIUrl":null,"url":null,"abstract":"We realize every closed flat 3-manifold as a cusp section of a complete,\nfinite-volume hyperbolic 4-manifold whose symmetry group acts transitively on\nthe set of cusps. Moreover, for every such 3-manifold, a dense subset of its\nflat metrics can be realized as cusp sections of a cusp-transitive 4-manifold.\nFinally, we prove that there are a lot of 4-manifolds with pairwise isometric\ncusps, for any given cusp type.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cusp-transitive 4-manifolds with every cusp section\",\"authors\":\"Jacopo Guoyi Chen, Edoardo Rizzi\",\"doi\":\"arxiv-2408.05080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We realize every closed flat 3-manifold as a cusp section of a complete,\\nfinite-volume hyperbolic 4-manifold whose symmetry group acts transitively on\\nthe set of cusps. Moreover, for every such 3-manifold, a dense subset of its\\nflat metrics can be realized as cusp sections of a cusp-transitive 4-manifold.\\nFinally, we prove that there are a lot of 4-manifolds with pairwise isometric\\ncusps, for any given cusp type.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们把每一个封闭的平面 3-manifold都看作是一个完整的、有限体积的双曲 4-manifold的尖顶截面,而这个双曲 4-manifold的对称群是在尖顶集上起传递作用的。此外,对于每一个这样的 3-manifold,其平坦度量的密集子集都可以实现为一个尖顶传递 4-manifold的尖顶部分。最后,我们证明,对于任何给定的尖顶类型,都存在大量具有成对等距尖顶的 4-manifold。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cusp-transitive 4-manifolds with every cusp section
We realize every closed flat 3-manifold as a cusp section of a complete, finite-volume hyperbolic 4-manifold whose symmetry group acts transitively on the set of cusps. Moreover, for every such 3-manifold, a dense subset of its flat metrics can be realized as cusp sections of a cusp-transitive 4-manifold. Finally, we prove that there are a lot of 4-manifolds with pairwise isometric cusps, for any given cusp type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信