{"title":"解析投影和共解析投影的反向里兹型不等式中的最佳常数","authors":"Petar Melentijević","doi":"arxiv-2408.02453","DOIUrl":null,"url":null,"abstract":"\\begin{abstract} Let $P_+$ be the Riesz's projection operator and let $P_-= I\n- P_+$. We consider the inequalities of the following form $$\n\\|f\\|_{L^p(\\mathbb{T})}\\leq B_{p,s}\\|( |P_ + f | ^s + |P_- f |^s) ^{\\frac\n1s}\\|_{L^p (\\mathbb{T})} $$ and prove them with sharp constant $B_{p,s}$ for $s\n\\in [p',+\\infty)$ and $1<p\\leq 2$ and $p\\geq 9,$ where\n$p':=\\min\\{p,\\frac{p}{p-1}\\}.$ \\end{abstract}","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best constants in reverse Riesz-type inequalities for analytoc and co-analytic projections\",\"authors\":\"Petar Melentijević\",\"doi\":\"arxiv-2408.02453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\\begin{abstract} Let $P_+$ be the Riesz's projection operator and let $P_-= I\\n- P_+$. We consider the inequalities of the following form $$\\n\\\\|f\\\\|_{L^p(\\\\mathbb{T})}\\\\leq B_{p,s}\\\\|( |P_ + f | ^s + |P_- f |^s) ^{\\\\frac\\n1s}\\\\|_{L^p (\\\\mathbb{T})} $$ and prove them with sharp constant $B_{p,s}$ for $s\\n\\\\in [p',+\\\\infty)$ and $1<p\\\\leq 2$ and $p\\\\geq 9,$ where\\n$p':=\\\\min\\\\{p,\\\\frac{p}{p-1}\\\\}.$ \\\\end{abstract}\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Best constants in reverse Riesz-type inequalities for analytoc and co-analytic projections
\begin{abstract} Let $P_+$ be the Riesz's projection operator and let $P_-= I
- P_+$. We consider the inequalities of the following form $$
\|f\|_{L^p(\mathbb{T})}\leq B_{p,s}\|( |P_ + f | ^s + |P_- f |^s) ^{\frac
1s}\|_{L^p (\mathbb{T})} $$ and prove them with sharp constant $B_{p,s}$ for $s
\in [p',+\infty)$ and $1