解析投影和共解析投影的反向里兹型不等式中的最佳常数

Petar Melentijević
{"title":"解析投影和共解析投影的反向里兹型不等式中的最佳常数","authors":"Petar Melentijević","doi":"arxiv-2408.02453","DOIUrl":null,"url":null,"abstract":"\\begin{abstract} Let $P_+$ be the Riesz's projection operator and let $P_-= I\n- P_+$. We consider the inequalities of the following form $$\n\\|f\\|_{L^p(\\mathbb{T})}\\leq B_{p,s}\\|( |P_ + f | ^s + |P_- f |^s) ^{\\frac\n1s}\\|_{L^p (\\mathbb{T})} $$ and prove them with sharp constant $B_{p,s}$ for $s\n\\in [p',+\\infty)$ and $1<p\\leq 2$ and $p\\geq 9,$ where\n$p':=\\min\\{p,\\frac{p}{p-1}\\}.$ \\end{abstract}","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best constants in reverse Riesz-type inequalities for analytoc and co-analytic projections\",\"authors\":\"Petar Melentijević\",\"doi\":\"arxiv-2408.02453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\\begin{abstract} Let $P_+$ be the Riesz's projection operator and let $P_-= I\\n- P_+$. We consider the inequalities of the following form $$\\n\\\\|f\\\\|_{L^p(\\\\mathbb{T})}\\\\leq B_{p,s}\\\\|( |P_ + f | ^s + |P_- f |^s) ^{\\\\frac\\n1s}\\\\|_{L^p (\\\\mathbb{T})} $$ and prove them with sharp constant $B_{p,s}$ for $s\\n\\\\in [p',+\\\\infty)$ and $1<p\\\\leq 2$ and $p\\\\geq 9,$ where\\n$p':=\\\\min\\\\{p,\\\\frac{p}{p-1}\\\\}.$ \\\\end{abstract}\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

\开始{摘要}设 $P_+$ 为里氏投影算子,设 $P_-= I- P_+$ 为里氏投影算子。我们考虑以下形式的不等式 $$\|f\|_{L^p(\mathbb{T})}\leq B_{p、s}\|( |P_ + f | ^s + |P_- f |^s) ^{\frac1s}\|_{L^p (\mathbb{T})} $$ 并用尖锐常数$B_{p,s}$来证明它们,其中$s在[p',+\infty)$并且$1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Best constants in reverse Riesz-type inequalities for analytoc and co-analytic projections
\begin{abstract} Let $P_+$ be the Riesz's projection operator and let $P_-= I - P_+$. We consider the inequalities of the following form $$ \|f\|_{L^p(\mathbb{T})}\leq B_{p,s}\|( |P_ + f | ^s + |P_- f |^s) ^{\frac 1s}\|_{L^p (\mathbb{T})} $$ and prove them with sharp constant $B_{p,s}$ for $s \in [p',+\infty)$ and $1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信