{"title":"有界解析函数 n 次导数的可变区域","authors":"Gangqiang Chen","doi":"arxiv-2408.04030","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{H}$ be the class of all analytic self-maps of the open unit\ndisk $\\mathbb{D}$. Denote by $H^n f(z)$ the $n$-th order hyperbolic derivative\nof $f\\in \\mathcal H$ at $z\\in \\mathbb{D}$. For $z_0\\in \\mathbb{D}$ and $\\gamma\n= (\\gamma_0, \\gamma_1 , \\ldots , \\gamma_{n-1}) \\in {\\mathbb D}^{n}$, let\n${\\mathcal H} (\\gamma) = \\{f \\in {\\mathcal H} : f (z_0) = \\gamma_0,H^1f (z_0) =\n\\gamma_1,\\ldots ,H^{n-1}f (z_0) = \\gamma_{n-1} \\}$. In this paper, we determine\nthe variability region $V(z_0, \\gamma ) = \\{ f^{(n)}(z_0) : f \\in {\\mathcal H}\n(\\gamma) \\}$, which can be called ``the generalized Schwarz-Pick Lemma of\n$n$-th derivative\". We then apply the generalized Schwarz-Pick Lemma to\nestablish a $n$-th order Dieudonn\\'e's Lemma, which provides an explicit\ndescription of the variability region $\\{h^{(n)}(z_0): h\\in \\mathcal{H},\nh(0)=0,h(z_0) =w_0, h'(z_0)=w_1,\\ldots, h^{(n-1)}(z_0)=w_{n-1}\\}$ for given\n$z_0$, $w_0$, $w_1,\\dots,w_{n-1}$. Moreover, we determine the form of all\nextremal functions.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variability regions for the $n$-th derivative of bounded analytic functions\",\"authors\":\"Gangqiang Chen\",\"doi\":\"arxiv-2408.04030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{H}$ be the class of all analytic self-maps of the open unit\\ndisk $\\\\mathbb{D}$. Denote by $H^n f(z)$ the $n$-th order hyperbolic derivative\\nof $f\\\\in \\\\mathcal H$ at $z\\\\in \\\\mathbb{D}$. For $z_0\\\\in \\\\mathbb{D}$ and $\\\\gamma\\n= (\\\\gamma_0, \\\\gamma_1 , \\\\ldots , \\\\gamma_{n-1}) \\\\in {\\\\mathbb D}^{n}$, let\\n${\\\\mathcal H} (\\\\gamma) = \\\\{f \\\\in {\\\\mathcal H} : f (z_0) = \\\\gamma_0,H^1f (z_0) =\\n\\\\gamma_1,\\\\ldots ,H^{n-1}f (z_0) = \\\\gamma_{n-1} \\\\}$. In this paper, we determine\\nthe variability region $V(z_0, \\\\gamma ) = \\\\{ f^{(n)}(z_0) : f \\\\in {\\\\mathcal H}\\n(\\\\gamma) \\\\}$, which can be called ``the generalized Schwarz-Pick Lemma of\\n$n$-th derivative\\\". We then apply the generalized Schwarz-Pick Lemma to\\nestablish a $n$-th order Dieudonn\\\\'e's Lemma, which provides an explicit\\ndescription of the variability region $\\\\{h^{(n)}(z_0): h\\\\in \\\\mathcal{H},\\nh(0)=0,h(z_0) =w_0, h'(z_0)=w_1,\\\\ldots, h^{(n-1)}(z_0)=w_{n-1}\\\\}$ for given\\n$z_0$, $w_0$, $w_1,\\\\dots,w_{n-1}$. Moreover, we determine the form of all\\nextremal functions.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variability regions for the $n$-th derivative of bounded analytic functions
Let $\mathcal{H}$ be the class of all analytic self-maps of the open unit
disk $\mathbb{D}$. Denote by $H^n f(z)$ the $n$-th order hyperbolic derivative
of $f\in \mathcal H$ at $z\in \mathbb{D}$. For $z_0\in \mathbb{D}$ and $\gamma
= (\gamma_0, \gamma_1 , \ldots , \gamma_{n-1}) \in {\mathbb D}^{n}$, let
${\mathcal H} (\gamma) = \{f \in {\mathcal H} : f (z_0) = \gamma_0,H^1f (z_0) =
\gamma_1,\ldots ,H^{n-1}f (z_0) = \gamma_{n-1} \}$. In this paper, we determine
the variability region $V(z_0, \gamma ) = \{ f^{(n)}(z_0) : f \in {\mathcal H}
(\gamma) \}$, which can be called ``the generalized Schwarz-Pick Lemma of
$n$-th derivative". We then apply the generalized Schwarz-Pick Lemma to
establish a $n$-th order Dieudonn\'e's Lemma, which provides an explicit
description of the variability region $\{h^{(n)}(z_0): h\in \mathcal{H},
h(0)=0,h(z_0) =w_0, h'(z_0)=w_1,\ldots, h^{(n-1)}(z_0)=w_{n-1}\}$ for given
$z_0$, $w_0$, $w_1,\dots,w_{n-1}$. Moreover, we determine the form of all
extremal functions.