Fanfan Wang, Jun Yuan, Zhufeng Zhang, Baoan Song, Junhua Zhao, Jincheng Yue, Tian Xu, Jun Zhou
{"title":"对 Janus V2COS 作为高性能碱金属离子电池负极材料的深入研究:扩散势垒、可回收性、比容量和开路电压","authors":"Fanfan Wang, Jun Yuan, Zhufeng Zhang, Baoan Song, Junhua Zhao, Jincheng Yue, Tian Xu, Jun Zhou","doi":"10.1103/physrevmaterials.8.085801","DOIUrl":null,"url":null,"abstract":"Transition metal carbides, nitrides, and carbonitrides, known as MXenes, exhibit exceptional conductivity, stability, and large specific surface area, rendering them promising candidates for anode materials in rechargeable batteries. Herein, we investigate the electrochemical characteristics of the Janus MXene <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer, as an anode material of alkali metal ion batteries by using first-principles calculations. The phonon band structure and <i>ab initio</i> molecular dynamics simulations confirm the stability of the Janus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer. The mechanical and electrical properties of the Janus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer are explored and proved to have good mechanical stability and electrical conductivity. The surface of the Janus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer demonstrates the facile adsorption of alkali metal ions and low diffusion barriers. As an anode material, the recyclability of the Janus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> has been verified in the ion intercalation/deintercalation processes. Furthermore, the theoretical specific capacities and the open-circuit voltages of the Janus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer are calculated to be <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>165.54</mn><mspace width=\"0.28em\"></mspace><mi>mA</mi><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">h</mi><mtext>/</mtext><mi mathvariant=\"normal\">g</mi></mrow></math> and 2.62 V for Li, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>662.18</mn><mspace width=\"0.28em\"></mspace><mi>mA</mi><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">h</mi><mtext>/</mtext><mi mathvariant=\"normal\">g</mi></mrow></math> and 0.76 V for Na, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>294.43</mn><mspace width=\"0.28em\"></mspace><mi>mA</mi><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">h</mi><mtext>/</mtext><mi mathvariant=\"normal\">g</mi></mrow></math> and 0.4 V for K, respectively. It presents that the Janus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer is a potential anode material of sodium-ion batteries and potassium-ion batteries.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into Janus V2COS as anode material of high-performance alkali metal ion battery: Diffusion barrier, recyclability, specific capacity, and open-circuit voltage\",\"authors\":\"Fanfan Wang, Jun Yuan, Zhufeng Zhang, Baoan Song, Junhua Zhao, Jincheng Yue, Tian Xu, Jun Zhou\",\"doi\":\"10.1103/physrevmaterials.8.085801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition metal carbides, nitrides, and carbonitrides, known as MXenes, exhibit exceptional conductivity, stability, and large specific surface area, rendering them promising candidates for anode materials in rechargeable batteries. Herein, we investigate the electrochemical characteristics of the Janus MXene <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer, as an anode material of alkali metal ion batteries by using first-principles calculations. The phonon band structure and <i>ab initio</i> molecular dynamics simulations confirm the stability of the Janus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer. The mechanical and electrical properties of the Janus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer are explored and proved to have good mechanical stability and electrical conductivity. The surface of the Janus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer demonstrates the facile adsorption of alkali metal ions and low diffusion barriers. As an anode material, the recyclability of the Janus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> has been verified in the ion intercalation/deintercalation processes. Furthermore, the theoretical specific capacities and the open-circuit voltages of the Janus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer are calculated to be <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>165.54</mn><mspace width=\\\"0.28em\\\"></mspace><mi>mA</mi><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">h</mi><mtext>/</mtext><mi mathvariant=\\\"normal\\\">g</mi></mrow></math> and 2.62 V for Li, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>662.18</mn><mspace width=\\\"0.28em\\\"></mspace><mi>mA</mi><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">h</mi><mtext>/</mtext><mi mathvariant=\\\"normal\\\">g</mi></mrow></math> and 0.76 V for Na, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>294.43</mn><mspace width=\\\"0.28em\\\"></mspace><mi>mA</mi><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">h</mi><mtext>/</mtext><mi mathvariant=\\\"normal\\\">g</mi></mrow></math> and 0.4 V for K, respectively. It presents that the Janus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi mathvariant=\\\"normal\\\">V</mi><mn>2</mn></msub><mi>COS</mi></mrow></math> monolayer is a potential anode material of sodium-ion batteries and potassium-ion batteries.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.085801\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.085801","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Insight into Janus V2COS as anode material of high-performance alkali metal ion battery: Diffusion barrier, recyclability, specific capacity, and open-circuit voltage
Transition metal carbides, nitrides, and carbonitrides, known as MXenes, exhibit exceptional conductivity, stability, and large specific surface area, rendering them promising candidates for anode materials in rechargeable batteries. Herein, we investigate the electrochemical characteristics of the Janus MXene monolayer, as an anode material of alkali metal ion batteries by using first-principles calculations. The phonon band structure and ab initio molecular dynamics simulations confirm the stability of the Janus monolayer. The mechanical and electrical properties of the Janus monolayer are explored and proved to have good mechanical stability and electrical conductivity. The surface of the Janus monolayer demonstrates the facile adsorption of alkali metal ions and low diffusion barriers. As an anode material, the recyclability of the Janus has been verified in the ion intercalation/deintercalation processes. Furthermore, the theoretical specific capacities and the open-circuit voltages of the Janus monolayer are calculated to be and 2.62 V for Li, and 0.76 V for Na, and and 0.4 V for K, respectively. It presents that the Janus monolayer is a potential anode material of sodium-ion batteries and potassium-ion batteries.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.