评估非语言行为对语言能力评级的影响

IF 2.2 1区 文学 0 LANGUAGE & LINGUISTICS
J. Dylan Burton
{"title":"评估非语言行为对语言能力评级的影响","authors":"J. Dylan Burton","doi":"10.1177/02655322241255709","DOIUrl":null,"url":null,"abstract":"Nonverbal behavior can impact language proficiency scores in speaking tests, but there is little empirical information of the size or consistency of its effects or whether language proficiency may be a moderating variable. In this study, 100 novice raters watched and scored 30 recordings of test takers taking an international, high stakes proficiency test. The speech samples were each 2 minutes long and ranged in proficiency levels. The raters scored each sample on fluency, vocabulary, grammar, and comprehensibility using 7-point semantic differential scales. Nonverbal behavior was extracted using an automated machine learning software called iMotions, and data was analyzed with ordinal mixed effects regression. Results showed that attentional variance predicted fluency, vocabulary, and grammar scores, but only when accounting for proficiency. Higher standard deviations of attention corresponded with lower scores for the lower-proficiency group, but not the mid/higher-proficiency group. Comprehensibility scores were only predicted by mean valence when proficiency was an interaction term. Higher mean valence, or positive emotional behavior, corresponded with higher scores in the lower-proficiency group, but not the mid/higher-proficiency group. Effect sizes for these predictors were quite small, with small amounts of variance explained. These results have implications for construct representation and test fairness.","PeriodicalId":17928,"journal":{"name":"Language Testing","volume":"23 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the impact of nonverbal behavior on language ability ratings\",\"authors\":\"J. Dylan Burton\",\"doi\":\"10.1177/02655322241255709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonverbal behavior can impact language proficiency scores in speaking tests, but there is little empirical information of the size or consistency of its effects or whether language proficiency may be a moderating variable. In this study, 100 novice raters watched and scored 30 recordings of test takers taking an international, high stakes proficiency test. The speech samples were each 2 minutes long and ranged in proficiency levels. The raters scored each sample on fluency, vocabulary, grammar, and comprehensibility using 7-point semantic differential scales. Nonverbal behavior was extracted using an automated machine learning software called iMotions, and data was analyzed with ordinal mixed effects regression. Results showed that attentional variance predicted fluency, vocabulary, and grammar scores, but only when accounting for proficiency. Higher standard deviations of attention corresponded with lower scores for the lower-proficiency group, but not the mid/higher-proficiency group. Comprehensibility scores were only predicted by mean valence when proficiency was an interaction term. Higher mean valence, or positive emotional behavior, corresponded with higher scores in the lower-proficiency group, but not the mid/higher-proficiency group. Effect sizes for these predictors were quite small, with small amounts of variance explained. These results have implications for construct representation and test fairness.\",\"PeriodicalId\":17928,\"journal\":{\"name\":\"Language Testing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language Testing\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1177/02655322241255709\",\"RegionNum\":1,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Testing","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1177/02655322241255709","RegionNum":1,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 0

摘要

非言语行为会影响口语测试中的语言能力得分,但关于其影响的大小或一致性,以及语言能力是否可能是一个调节变量的经验信息却很少。在这项研究中,100 名新手评分员观看了 30 份参加国际高风险水平测试的考生录音,并进行了评分。每个语音样本时长为 2 分钟,水平参差不齐。评分者使用 7 点语义差异量表对每个样本的流利程度、词汇量、语法和可理解性进行评分。使用名为 iMotions 的自动机器学习软件提取非语言行为,并使用序数混合效应回归法分析数据。结果表明,注意力差异可以预测流利程度、词汇量和语法得分,但只有在考虑到熟练程度的情况下才能预测。注意力标准差越高,低能力组的得分越低,但中/高能力组则不然。只有当能力是一个交互项时,可理解性得分才会受到平均情绪的影响。较高的平均情感或积极情绪行为与较低能力组的较高分数相对应,但与中/较高能力组无关。这些预测因子的效应大小相当小,所解释的方差也很小。这些结果对建构表征和测试公平性有一定的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the impact of nonverbal behavior on language ability ratings
Nonverbal behavior can impact language proficiency scores in speaking tests, but there is little empirical information of the size or consistency of its effects or whether language proficiency may be a moderating variable. In this study, 100 novice raters watched and scored 30 recordings of test takers taking an international, high stakes proficiency test. The speech samples were each 2 minutes long and ranged in proficiency levels. The raters scored each sample on fluency, vocabulary, grammar, and comprehensibility using 7-point semantic differential scales. Nonverbal behavior was extracted using an automated machine learning software called iMotions, and data was analyzed with ordinal mixed effects regression. Results showed that attentional variance predicted fluency, vocabulary, and grammar scores, but only when accounting for proficiency. Higher standard deviations of attention corresponded with lower scores for the lower-proficiency group, but not the mid/higher-proficiency group. Comprehensibility scores were only predicted by mean valence when proficiency was an interaction term. Higher mean valence, or positive emotional behavior, corresponded with higher scores in the lower-proficiency group, but not the mid/higher-proficiency group. Effect sizes for these predictors were quite small, with small amounts of variance explained. These results have implications for construct representation and test fairness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Language Testing
Language Testing Multiple-
CiteScore
6.70
自引率
9.80%
发文量
35
期刊介绍: Language Testing is a fully peer reviewed international journal that publishes original research and review articles on language testing and assessment. It provides a forum for the exchange of ideas and information between people working in the fields of first and second language testing and assessment. This includes researchers and practitioners in EFL and ESL testing, and assessment in child language acquisition and language pathology. In addition, special attention is focused on issues of testing theory, experimental investigations, and the following up of practical implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信