{"title":"具有布斯曼函数的本征格罗莫夫双曲空间的均匀化","authors":"Vasudevarao Allu, Alan P Jose","doi":"arxiv-2408.01412","DOIUrl":null,"url":null,"abstract":"For any intrinsic Gromov hyperbolic space we establish a Gehring-Hayman type\ntheorem for conformally deformed spaces. As an application, we prove that any\nintrinsic hyperbolic space with atleast two points in the Gromov boundary can\nbe uniformized by densities induced by Busemann functions.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniformization of intrinsic Gromov hyperbolic spaces with Busemann functions\",\"authors\":\"Vasudevarao Allu, Alan P Jose\",\"doi\":\"arxiv-2408.01412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any intrinsic Gromov hyperbolic space we establish a Gehring-Hayman type\\ntheorem for conformally deformed spaces. As an application, we prove that any\\nintrinsic hyperbolic space with atleast two points in the Gromov boundary can\\nbe uniformized by densities induced by Busemann functions.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uniformization of intrinsic Gromov hyperbolic spaces with Busemann functions
For any intrinsic Gromov hyperbolic space we establish a Gehring-Hayman type
theorem for conformally deformed spaces. As an application, we prove that any
intrinsic hyperbolic space with atleast two points in the Gromov boundary can
be uniformized by densities induced by Busemann functions.