具有布斯曼函数的本征格罗莫夫双曲空间的均匀化

Vasudevarao Allu, Alan P Jose
{"title":"具有布斯曼函数的本征格罗莫夫双曲空间的均匀化","authors":"Vasudevarao Allu, Alan P Jose","doi":"arxiv-2408.01412","DOIUrl":null,"url":null,"abstract":"For any intrinsic Gromov hyperbolic space we establish a Gehring-Hayman type\ntheorem for conformally deformed spaces. As an application, we prove that any\nintrinsic hyperbolic space with atleast two points in the Gromov boundary can\nbe uniformized by densities induced by Busemann functions.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniformization of intrinsic Gromov hyperbolic spaces with Busemann functions\",\"authors\":\"Vasudevarao Allu, Alan P Jose\",\"doi\":\"arxiv-2408.01412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any intrinsic Gromov hyperbolic space we establish a Gehring-Hayman type\\ntheorem for conformally deformed spaces. As an application, we prove that any\\nintrinsic hyperbolic space with atleast two points in the Gromov boundary can\\nbe uniformized by densities induced by Busemann functions.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任何本征格罗莫夫双曲空间,我们都建立了保形变形空间的 Gehring-Hayman 类型定理。作为应用,我们证明了在格罗莫夫边界上至少有两个点的任何本征双曲空间都可以被布斯曼函数诱导的密度均匀化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniformization of intrinsic Gromov hyperbolic spaces with Busemann functions
For any intrinsic Gromov hyperbolic space we establish a Gehring-Hayman type theorem for conformally deformed spaces. As an application, we prove that any intrinsic hyperbolic space with atleast two points in the Gromov boundary can be uniformized by densities induced by Busemann functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信