超复变正则函数的统一理论

Riccardo Ghiloni, Caterina Stoppato
{"title":"超复变正则函数的统一理论","authors":"Riccardo Ghiloni, Caterina Stoppato","doi":"arxiv-2408.01523","DOIUrl":null,"url":null,"abstract":"This work proposes a unified theory of regularity in one hypercomplex\nvariable: the theory of $T$-regular functions. In the special case of\nquaternion-valued functions of one quaternionic variable, this unified theory\ncomprises Fueter-regular functions, slice-regular functions and a\nrecently-discovered function class. In the special case of Clifford-valued\nfunctions of one paravector variable, it encompasses monogenic functions,\nslice-monogenic functions, generalized partial-slice monogenic functions, and a\nvariety of function classes not yet considered in literature. For $T$-regular\nfunctions over an associative $*$-algebra, this work provides integral\nformulas, series expansions, an Identity Principle, a Maximum Modulus Principle\nand a Representation Formula. It also proves some foundational results about\n$T$-regular functions over an alternative but nonassociative $*$-algebra, such\nas the real algebra of octonions.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified theory of regular functions of a hypercomplex variable\",\"authors\":\"Riccardo Ghiloni, Caterina Stoppato\",\"doi\":\"arxiv-2408.01523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a unified theory of regularity in one hypercomplex\\nvariable: the theory of $T$-regular functions. In the special case of\\nquaternion-valued functions of one quaternionic variable, this unified theory\\ncomprises Fueter-regular functions, slice-regular functions and a\\nrecently-discovered function class. In the special case of Clifford-valued\\nfunctions of one paravector variable, it encompasses monogenic functions,\\nslice-monogenic functions, generalized partial-slice monogenic functions, and a\\nvariety of function classes not yet considered in literature. For $T$-regular\\nfunctions over an associative $*$-algebra, this work provides integral\\nformulas, series expansions, an Identity Principle, a Maximum Modulus Principle\\nand a Representation Formula. It also proves some foundational results about\\n$T$-regular functions over an alternative but nonassociative $*$-algebra, such\\nas the real algebra of octonions.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个超复变函数正则性的统一理论:$T$正则函数理论。在一个四元变量的四元值函数特例中,这一统一理论包括富特正则函数、片正则函数和最近发现的函数类。在一个矢量变量的克利福德值函数的特殊情况下,它包括单元函数、片元函数、广义部分片元函数以及文献中尚未考虑的各种函数类。对于关联$*$-代数上的$T$-正则函数,这部著作提供了积分公式、级数展开、同一性原理、最大模原理和表示公式。它还证明了关于另一种非联立 $*$ 代数(如八元实代数)上的 $T$-regular 函数的一些基础性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified theory of regular functions of a hypercomplex variable
This work proposes a unified theory of regularity in one hypercomplex variable: the theory of $T$-regular functions. In the special case of quaternion-valued functions of one quaternionic variable, this unified theory comprises Fueter-regular functions, slice-regular functions and a recently-discovered function class. In the special case of Clifford-valued functions of one paravector variable, it encompasses monogenic functions, slice-monogenic functions, generalized partial-slice monogenic functions, and a variety of function classes not yet considered in literature. For $T$-regular functions over an associative $*$-algebra, this work provides integral formulas, series expansions, an Identity Principle, a Maximum Modulus Principle and a Representation Formula. It also proves some foundational results about $T$-regular functions over an alternative but nonassociative $*$-algebra, such as the real algebra of octonions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信