{"title":"超复变正则函数的统一理论","authors":"Riccardo Ghiloni, Caterina Stoppato","doi":"arxiv-2408.01523","DOIUrl":null,"url":null,"abstract":"This work proposes a unified theory of regularity in one hypercomplex\nvariable: the theory of $T$-regular functions. In the special case of\nquaternion-valued functions of one quaternionic variable, this unified theory\ncomprises Fueter-regular functions, slice-regular functions and a\nrecently-discovered function class. In the special case of Clifford-valued\nfunctions of one paravector variable, it encompasses monogenic functions,\nslice-monogenic functions, generalized partial-slice monogenic functions, and a\nvariety of function classes not yet considered in literature. For $T$-regular\nfunctions over an associative $*$-algebra, this work provides integral\nformulas, series expansions, an Identity Principle, a Maximum Modulus Principle\nand a Representation Formula. It also proves some foundational results about\n$T$-regular functions over an alternative but nonassociative $*$-algebra, such\nas the real algebra of octonions.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified theory of regular functions of a hypercomplex variable\",\"authors\":\"Riccardo Ghiloni, Caterina Stoppato\",\"doi\":\"arxiv-2408.01523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a unified theory of regularity in one hypercomplex\\nvariable: the theory of $T$-regular functions. In the special case of\\nquaternion-valued functions of one quaternionic variable, this unified theory\\ncomprises Fueter-regular functions, slice-regular functions and a\\nrecently-discovered function class. In the special case of Clifford-valued\\nfunctions of one paravector variable, it encompasses monogenic functions,\\nslice-monogenic functions, generalized partial-slice monogenic functions, and a\\nvariety of function classes not yet considered in literature. For $T$-regular\\nfunctions over an associative $*$-algebra, this work provides integral\\nformulas, series expansions, an Identity Principle, a Maximum Modulus Principle\\nand a Representation Formula. It also proves some foundational results about\\n$T$-regular functions over an alternative but nonassociative $*$-algebra, such\\nas the real algebra of octonions.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A unified theory of regular functions of a hypercomplex variable
This work proposes a unified theory of regularity in one hypercomplex
variable: the theory of $T$-regular functions. In the special case of
quaternion-valued functions of one quaternionic variable, this unified theory
comprises Fueter-regular functions, slice-regular functions and a
recently-discovered function class. In the special case of Clifford-valued
functions of one paravector variable, it encompasses monogenic functions,
slice-monogenic functions, generalized partial-slice monogenic functions, and a
variety of function classes not yet considered in literature. For $T$-regular
functions over an associative $*$-algebra, this work provides integral
formulas, series expansions, an Identity Principle, a Maximum Modulus Principle
and a Representation Formula. It also proves some foundational results about
$T$-regular functions over an alternative but nonassociative $*$-algebra, such
as the real algebra of octonions.