{"title":"Ba1-xLaxSnO3 上 Pb(Zr0.7Ti0.3)O3 的铁电转换和场效应","authors":"Hahoon Lee, Hwanhui Yun, Bongju Kim, Kookrin Char","doi":"10.1103/physrevmaterials.8.084402","DOIUrl":null,"url":null,"abstract":"Ferroelectric field-effect transistors offer a potential for its important role in integrated memory and computing systems, and research on them is actively ongoing. In this study, we investigated the ferroelectric properties of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Pb</mi><mrow><mo>(</mo><mrow><mi mathvariant=\"normal\">Z</mi><msub><mi mathvariant=\"normal\">r</mi><mrow><mn>0.7</mn></mrow></msub><mi mathvariant=\"normal\">T</mi><msub><mi mathvariant=\"normal\">i</mi><mrow><mn>0.3</mn></mrow></msub></mrow><mo>)</mo></mrow><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math>, which is lattice matched with the La-doped high mobility perovskite oxide semiconductor <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">B</mi><msub><mi mathvariant=\"normal\">a</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi mathvariant=\"normal\">L</mi><msub><mi mathvariant=\"normal\">a</mi><mi>x</mi></msub><mi>Sn</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math>. Growth of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>r</mi></math> phase in epitaxial <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Pb</mi><mrow><mo>(</mo><mrow><mi mathvariant=\"normal\">Z</mi><msub><mi mathvariant=\"normal\">r</mi><mrow><mn>0.7</mn></mrow></msub><mi mathvariant=\"normal\">T</mi><msub><mi mathvariant=\"normal\">i</mi><mrow><mn>0.3</mn></mrow></msub></mrow><mo>)</mo></mrow><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> on <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">B</mi><msub><mi mathvariant=\"normal\">a</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi mathvariant=\"normal\">L</mi><msub><mi mathvariant=\"normal\">a</mi><mi>x</mi></msub><mi>Sn</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> was confirmed and its basic ferroelectric and dielectric properties were studied by polarization-electric and capacitance-voltage measurement. We then studied the field effect of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Pb</mi><mrow><mo>(</mo><mrow><mi mathvariant=\"normal\">Z</mi><msub><mi mathvariant=\"normal\">r</mi><mrow><mn>0.7</mn></mrow></msub><mi mathvariant=\"normal\">T</mi><msub><mi mathvariant=\"normal\">i</mi><mrow><mn>0.3</mn></mrow></msub></mrow><mo>)</mo></mrow><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> on the electrical properties of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">B</mi><msub><mi mathvariant=\"normal\">a</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi mathvariant=\"normal\">L</mi><msub><mi mathvariant=\"normal\">a</mi><mi>x</mi></msub><mi>Sn</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> as we vary the La doping concentration. We find that the field effect of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Pb</mi><mrow><mo>(</mo><mrow><mi mathvariant=\"normal\">Z</mi><msub><mi mathvariant=\"normal\">r</mi><mrow><mn>0.7</mn></mrow></msub><mi mathvariant=\"normal\">T</mi><msub><mi mathvariant=\"normal\">i</mi><mrow><mn>0.3</mn></mrow></msub></mrow><mo>)</mo></mrow><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> on <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">B</mi><msub><mi mathvariant=\"normal\">a</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi mathvariant=\"normal\">L</mi><msub><mi mathvariant=\"normal\">a</mi><mi>x</mi></msub><mi>Sn</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> is determined by competition between its ferroelectric and dielectric properties, depending on the La doping concentration. In high La doping rates, the field effect is dominated by the ferroelectric switching while in lower La doping rates, the effect is mainly by dielectric response as the depolarization field in the depleted layer weakens the ferroelectric effect. As per the width and direction of the hysteresis, it is also controlled by the competition between the counterclockwise ferroelectric response and the clockwise dielectric response due to the trapped charges near the interface. This study offers insights into optimizing the field effect by understanding the complex interplay between ferroelectric materials and low carrier density semiconductors.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"22 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric switching and field effect of Pb(Zr0.7Ti0.3)O3 on Ba1−xLaxSnO3\",\"authors\":\"Hahoon Lee, Hwanhui Yun, Bongju Kim, Kookrin Char\",\"doi\":\"10.1103/physrevmaterials.8.084402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferroelectric field-effect transistors offer a potential for its important role in integrated memory and computing systems, and research on them is actively ongoing. In this study, we investigated the ferroelectric properties of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Pb</mi><mrow><mo>(</mo><mrow><mi mathvariant=\\\"normal\\\">Z</mi><msub><mi mathvariant=\\\"normal\\\">r</mi><mrow><mn>0.7</mn></mrow></msub><mi mathvariant=\\\"normal\\\">T</mi><msub><mi mathvariant=\\\"normal\\\">i</mi><mrow><mn>0.3</mn></mrow></msub></mrow><mo>)</mo></mrow><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math>, which is lattice matched with the La-doped high mobility perovskite oxide semiconductor <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">B</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi mathvariant=\\\"normal\\\">L</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mi>x</mi></msub><mi>Sn</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math>. Growth of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>r</mi></math> phase in epitaxial <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Pb</mi><mrow><mo>(</mo><mrow><mi mathvariant=\\\"normal\\\">Z</mi><msub><mi mathvariant=\\\"normal\\\">r</mi><mrow><mn>0.7</mn></mrow></msub><mi mathvariant=\\\"normal\\\">T</mi><msub><mi mathvariant=\\\"normal\\\">i</mi><mrow><mn>0.3</mn></mrow></msub></mrow><mo>)</mo></mrow><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> on <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">B</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi mathvariant=\\\"normal\\\">L</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mi>x</mi></msub><mi>Sn</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> was confirmed and its basic ferroelectric and dielectric properties were studied by polarization-electric and capacitance-voltage measurement. We then studied the field effect of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Pb</mi><mrow><mo>(</mo><mrow><mi mathvariant=\\\"normal\\\">Z</mi><msub><mi mathvariant=\\\"normal\\\">r</mi><mrow><mn>0.7</mn></mrow></msub><mi mathvariant=\\\"normal\\\">T</mi><msub><mi mathvariant=\\\"normal\\\">i</mi><mrow><mn>0.3</mn></mrow></msub></mrow><mo>)</mo></mrow><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> on the electrical properties of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">B</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi mathvariant=\\\"normal\\\">L</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mi>x</mi></msub><mi>Sn</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> as we vary the La doping concentration. We find that the field effect of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Pb</mi><mrow><mo>(</mo><mrow><mi mathvariant=\\\"normal\\\">Z</mi><msub><mi mathvariant=\\\"normal\\\">r</mi><mrow><mn>0.7</mn></mrow></msub><mi mathvariant=\\\"normal\\\">T</mi><msub><mi mathvariant=\\\"normal\\\">i</mi><mrow><mn>0.3</mn></mrow></msub></mrow><mo>)</mo></mrow><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> on <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">B</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi mathvariant=\\\"normal\\\">L</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mi>x</mi></msub><mi>Sn</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> is determined by competition between its ferroelectric and dielectric properties, depending on the La doping concentration. In high La doping rates, the field effect is dominated by the ferroelectric switching while in lower La doping rates, the effect is mainly by dielectric response as the depolarization field in the depleted layer weakens the ferroelectric effect. As per the width and direction of the hysteresis, it is also controlled by the competition between the counterclockwise ferroelectric response and the clockwise dielectric response due to the trapped charges near the interface. This study offers insights into optimizing the field effect by understanding the complex interplay between ferroelectric materials and low carrier density semiconductors.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.084402\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084402","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
铁电场效应晶体管有望在集成存储器和计算系统中发挥重要作用,相关研究正在积极进行中。在本研究中,我们研究了与掺 La 的高迁移率包晶氧化物半导体 Ba1-xLaxSnO3 晶格匹配的 Pb(Zr0.7Ti0.3)O3 的铁电特性。在 Ba1-xLaxSnO3 上外延 Pb(Zr0.7Ti0.3)O3 的 r 相生长得到了证实,并通过极化-电学和电容-电压测量研究了其基本的铁电和介电性质。然后,我们研究了随着 La 掺杂浓度的变化,Pb(Zr0.7Ti0.3)O3 对 Ba1-xLaxSnO3 电性能的场效应。我们发现,Pb(Zr0.7Ti0.3)O3 对 Ba1-xLaxSnO3 的场效应取决于 La 掺杂浓度,由其铁电特性和介电特性之间的竞争决定。在高 La 掺杂率的情况下,场效应主要由铁电切换主导,而在低 La 掺杂率的情况下,场效应主要由介电响应主导,因为耗尽层中的去极化场会削弱铁电效应。至于磁滞的宽度和方向,也是由逆时针方向的铁电响应和顺时针方向的介电响应之间的竞争所控制的,这是由于界面附近的捕获电荷造成的。这项研究通过了解铁电材料和低载流子密度半导体之间复杂的相互作用,为优化场效应提供了见解。
Ferroelectric switching and field effect of Pb(Zr0.7Ti0.3)O3 on Ba1−xLaxSnO3
Ferroelectric field-effect transistors offer a potential for its important role in integrated memory and computing systems, and research on them is actively ongoing. In this study, we investigated the ferroelectric properties of , which is lattice matched with the La-doped high mobility perovskite oxide semiconductor . Growth of the phase in epitaxial on was confirmed and its basic ferroelectric and dielectric properties were studied by polarization-electric and capacitance-voltage measurement. We then studied the field effect of on the electrical properties of as we vary the La doping concentration. We find that the field effect of on is determined by competition between its ferroelectric and dielectric properties, depending on the La doping concentration. In high La doping rates, the field effect is dominated by the ferroelectric switching while in lower La doping rates, the effect is mainly by dielectric response as the depolarization field in the depleted layer weakens the ferroelectric effect. As per the width and direction of the hysteresis, it is also controlled by the competition between the counterclockwise ferroelectric response and the clockwise dielectric response due to the trapped charges near the interface. This study offers insights into optimizing the field effect by understanding the complex interplay between ferroelectric materials and low carrier density semiconductors.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.