通过重新定义谓词进行逆向解释

Léo Saulières, Martin C. Cooper, Florence Dupin de Saint Cyr
{"title":"通过重新定义谓词进行逆向解释","authors":"Léo Saulières, Martin C. Cooper, Florence Dupin de Saint Cyr","doi":"arxiv-2408.02606","DOIUrl":null,"url":null,"abstract":"History eXplanation based on Predicates (HXP), studies the behavior of a\nReinforcement Learning (RL) agent in a sequence of agent's interactions with\nthe environment (a history), through the prism of an arbitrary predicate. To\nthis end, an action importance score is computed for each action in the\nhistory. The explanation consists in displaying the most important actions to\nthe user. As the calculation of an action's importance is #W[1]-hard, it is\nnecessary for long histories to approximate the scores, at the expense of their\nquality. We therefore propose a new HXP method, called Backward-HXP, to provide\nexplanations for these histories without having to approximate scores.\nExperiments show the ability of B-HXP to summarise long histories.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward explanations via redefinition of predicates\",\"authors\":\"Léo Saulières, Martin C. Cooper, Florence Dupin de Saint Cyr\",\"doi\":\"arxiv-2408.02606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"History eXplanation based on Predicates (HXP), studies the behavior of a\\nReinforcement Learning (RL) agent in a sequence of agent's interactions with\\nthe environment (a history), through the prism of an arbitrary predicate. To\\nthis end, an action importance score is computed for each action in the\\nhistory. The explanation consists in displaying the most important actions to\\nthe user. As the calculation of an action's importance is #W[1]-hard, it is\\nnecessary for long histories to approximate the scores, at the expense of their\\nquality. We therefore propose a new HXP method, called Backward-HXP, to provide\\nexplanations for these histories without having to approximate scores.\\nExperiments show the ability of B-HXP to summarise long histories.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于谓词的历史规划(HXP)是通过任意谓词的棱镜,研究强化学习(RL)代理在代理与环境(历史)的交互序列中的行为。为此,要为历史中的每个行动计算行动重要性得分。解释工作包括向用户显示最重要的操作。由于计算一个操作的重要性是 #W[1]-困难的,因此对于长历史来说,有必要以牺牲其质量为代价来近似计算分数。因此,我们提出了一种新的 HXP 方法(称为 Backward-HXP),为这些历史记录提供解释,而无需近似分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backward explanations via redefinition of predicates
History eXplanation based on Predicates (HXP), studies the behavior of a Reinforcement Learning (RL) agent in a sequence of agent's interactions with the environment (a history), through the prism of an arbitrary predicate. To this end, an action importance score is computed for each action in the history. The explanation consists in displaying the most important actions to the user. As the calculation of an action's importance is #W[1]-hard, it is necessary for long histories to approximate the scores, at the expense of their quality. We therefore propose a new HXP method, called Backward-HXP, to provide explanations for these histories without having to approximate scores. Experiments show the ability of B-HXP to summarise long histories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信