论 Max-2Lin(2) 的 NP-Hardness 近似曲线

Björn Martinsson
{"title":"论 Max-2Lin(2) 的 NP-Hardness 近似曲线","authors":"Björn Martinsson","doi":"arxiv-2408.04832","DOIUrl":null,"url":null,"abstract":"In the \\maxtlint{} problem you are given a system of equations on the form\n$x_i + x_j \\equiv b \\pmod{2}$, and your objective is to find an assignment that\nsatisfies as many equations as possible. Let $c \\in [0.5, 1]$ denote the\nmaximum fraction of satisfiable equations. In this paper we construct a curve\n$s (c)$ such that it is \\NPhard{} to find a solution satisfying at least a\nfraction $s$ of equations. This curve either matches or improves all of the\npreviously known inapproximability NP-hardness results for \\maxtlint{}. In\nparticular, we show that if $c \\geqslant 0.9232$ then $\\frac{1 - s (c)}{1 - c}\n> 1.48969$, which improves the NP-hardness inapproximability constant for the\nmin deletion version of \\maxtlint{}. Our work complements the work of O'Donnell\nand Wu that studied the same question assuming the Unique Games Conjecture. Similar to earlier inapproximability results for \\maxtlint{}, we use a gadget\nreduction from the $(2^k - 1)$-ary Hadamard predicate. Previous works used $k$\nranging from $2$ to $4$. Our main result is a procedure for taking a gadget for\nsome fixed $k$, and use it as a building block to construct better and better\ngadgets as $k$ tends to infinity. Our method can be used to boost the result of\nboth smaller gadgets created by hand $(k = 3)$ or larger gadgets constructed\nusing a computer $(k = 4)$.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the NP-Hardness Approximation Curve for Max-2Lin(2)\",\"authors\":\"Björn Martinsson\",\"doi\":\"arxiv-2408.04832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the \\\\maxtlint{} problem you are given a system of equations on the form\\n$x_i + x_j \\\\equiv b \\\\pmod{2}$, and your objective is to find an assignment that\\nsatisfies as many equations as possible. Let $c \\\\in [0.5, 1]$ denote the\\nmaximum fraction of satisfiable equations. In this paper we construct a curve\\n$s (c)$ such that it is \\\\NPhard{} to find a solution satisfying at least a\\nfraction $s$ of equations. This curve either matches or improves all of the\\npreviously known inapproximability NP-hardness results for \\\\maxtlint{}. In\\nparticular, we show that if $c \\\\geqslant 0.9232$ then $\\\\frac{1 - s (c)}{1 - c}\\n> 1.48969$, which improves the NP-hardness inapproximability constant for the\\nmin deletion version of \\\\maxtlint{}. Our work complements the work of O'Donnell\\nand Wu that studied the same question assuming the Unique Games Conjecture. Similar to earlier inapproximability results for \\\\maxtlint{}, we use a gadget\\nreduction from the $(2^k - 1)$-ary Hadamard predicate. Previous works used $k$\\nranging from $2$ to $4$. Our main result is a procedure for taking a gadget for\\nsome fixed $k$, and use it as a building block to construct better and better\\ngadgets as $k$ tends to infinity. Our method can be used to boost the result of\\nboth smaller gadgets created by hand $(k = 3)$ or larger gadgets constructed\\nusing a computer $(k = 4)$.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 \maxtlint{} 问题中,你会得到一个形式为$x_i + x_j \equiv b \pmod{2}$的方程组,你的目标是找到一个能满足尽可能多方程的赋值。让 $c \in [0.5, 1]$ 表示可满足方程的最大分数。在本文中,我们将构建一条曲线 $s (c)$,这样就可以 \NPhard{} 找到至少满足 $s$ 等式的解。这条曲线符合或改进了所有之前已知的 \maxtlint{} 的不可逼近性 NP-hardness结果。特别是,我们证明了如果 $c \geqslant 0.9232$,那么 $frac{1 - s (c)}{1 - c}> 1.48969$,这改进了删除版 \maxtlint{} 的 NP-困难不可逼近常数。我们的工作是对奥唐纳和吴的工作的补充,后者在假设唯一游戏猜想的前提下研究了同一问题。与之前针对 \maxtlint{} 的不可逼近性结果类似,我们使用了来自 $(2^k - 1)$ary Hadamard ㄊ的小工具还原。之前的工作使用的 $k$ 范围从 $2$ 到 $4$。我们的主要成果是一个程序,用于获取某个固定 $k$ 的小工具,当 $k$ 趋于无穷大时,以它为基石构建出越来越好的小工具。我们的方法既可以用来提高手工创建的小工具的结果 $(k = 3)$,也可以用来提高用计算机构建的大工具的结果 $(k=4)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the NP-Hardness Approximation Curve for Max-2Lin(2)
In the \maxtlint{} problem you are given a system of equations on the form $x_i + x_j \equiv b \pmod{2}$, and your objective is to find an assignment that satisfies as many equations as possible. Let $c \in [0.5, 1]$ denote the maximum fraction of satisfiable equations. In this paper we construct a curve $s (c)$ such that it is \NPhard{} to find a solution satisfying at least a fraction $s$ of equations. This curve either matches or improves all of the previously known inapproximability NP-hardness results for \maxtlint{}. In particular, we show that if $c \geqslant 0.9232$ then $\frac{1 - s (c)}{1 - c} > 1.48969$, which improves the NP-hardness inapproximability constant for the min deletion version of \maxtlint{}. Our work complements the work of O'Donnell and Wu that studied the same question assuming the Unique Games Conjecture. Similar to earlier inapproximability results for \maxtlint{}, we use a gadget reduction from the $(2^k - 1)$-ary Hadamard predicate. Previous works used $k$ ranging from $2$ to $4$. Our main result is a procedure for taking a gadget for some fixed $k$, and use it as a building block to construct better and better gadgets as $k$ tends to infinity. Our method can be used to boost the result of both smaller gadgets created by hand $(k = 3)$ or larger gadgets constructed using a computer $(k = 4)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信