{"title":"图的 K1,2 结构连通性","authors":"Xiao Zhao, Haojie Zheng, Hengzhe Li","doi":"10.1007/s11227-024-06390-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on examining the <span>\\(K_{1,2}\\)</span>-structure-connectivity of any connected graph. Let <i>G</i> be a connected graph with <i>n</i> vertices, we show that <span>\\(\\kappa (G; K_{1,2})\\)</span> is well defined if <span>\\(\\hbox {diam}(G)\\ge 4\\)</span>, or <span>\\(n\\equiv 1\\pmod 3\\)</span>, or <span>\\(G\\notin \\{C_{5},K_{n}\\}\\)</span> when <span>\\(n\\equiv 2\\pmod 3\\)</span>, or there exist three vertices <i>u</i>, <i>v</i>, <i>w</i> such that <span>\\(N_{G}(u)\\cap (N_{G}(\\{v,w\\})\\cup \\{v,w\\})=\\emptyset\\)</span> when <span>\\(n\\equiv 0\\pmod 3\\)</span>. Furthermore, if <i>G</i> has <span>\\(K_{1,2}\\)</span>-structure-cut, we prove <span>\\(\\kappa (G)/3\\le \\kappa (G; K_{1,2})\\le \\kappa (G)\\)</span>.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The K1,2-structure-connectivity of graphs\",\"authors\":\"Xiao Zhao, Haojie Zheng, Hengzhe Li\",\"doi\":\"10.1007/s11227-024-06390-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we focus on examining the <span>\\\\(K_{1,2}\\\\)</span>-structure-connectivity of any connected graph. Let <i>G</i> be a connected graph with <i>n</i> vertices, we show that <span>\\\\(\\\\kappa (G; K_{1,2})\\\\)</span> is well defined if <span>\\\\(\\\\hbox {diam}(G)\\\\ge 4\\\\)</span>, or <span>\\\\(n\\\\equiv 1\\\\pmod 3\\\\)</span>, or <span>\\\\(G\\\\notin \\\\{C_{5},K_{n}\\\\}\\\\)</span> when <span>\\\\(n\\\\equiv 2\\\\pmod 3\\\\)</span>, or there exist three vertices <i>u</i>, <i>v</i>, <i>w</i> such that <span>\\\\(N_{G}(u)\\\\cap (N_{G}(\\\\{v,w\\\\})\\\\cup \\\\{v,w\\\\})=\\\\emptyset\\\\)</span> when <span>\\\\(n\\\\equiv 0\\\\pmod 3\\\\)</span>. Furthermore, if <i>G</i> has <span>\\\\(K_{1,2}\\\\)</span>-structure-cut, we prove <span>\\\\(\\\\kappa (G)/3\\\\le \\\\kappa (G; K_{1,2})\\\\le \\\\kappa (G)\\\\)</span>.</p>\",\"PeriodicalId\":501596,\"journal\":{\"name\":\"The Journal of Supercomputing\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-024-06390-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06390-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们将重点研究任意连通图的\(K_{1,2}\)-结构-连通性。让 G 是一个有 n 个顶点的连通图,我们证明,如果 \kappa (G. K_{1,2}\) 定义良好,那么 \kappa (G. K_{1,2}\) 就是连通图;如果(\hbox {diam}(G)\ge 4\), 或者(n\equiv 1\pmod 3\), 或者(G\notin \{C_{5},K_{n}\}) 当(n\equiv 2\pmod 3\)、或者存在三个顶点u, v, w,当(n/equiv 0\pmod 3\) 时,\(N_{G}(u)\cap (N_{G}(\{v,w\})\cup \{v,w\})=\emptyset\).此外,如果G有\(K_{1,2}\)-结构切分,我们证明\(\kappa (G)/3\le \kappa (G; K_{1,2})\le \kappa (G)\).
In this paper, we focus on examining the \(K_{1,2}\)-structure-connectivity of any connected graph. Let G be a connected graph with n vertices, we show that \(\kappa (G; K_{1,2})\) is well defined if \(\hbox {diam}(G)\ge 4\), or \(n\equiv 1\pmod 3\), or \(G\notin \{C_{5},K_{n}\}\) when \(n\equiv 2\pmod 3\), or there exist three vertices u, v, w such that \(N_{G}(u)\cap (N_{G}(\{v,w\})\cup \{v,w\})=\emptyset\) when \(n\equiv 0\pmod 3\). Furthermore, if G has \(K_{1,2}\)-structure-cut, we prove \(\kappa (G)/3\le \kappa (G; K_{1,2})\le \kappa (G)\).