{"title":"多模态电阻抗断层扫描和脑电图成像:EIT 成像中更高的颅骨电导分辨率是否能提高脑电波源定位的准确性?","authors":"Ville Rimpiläinen, Alexandra Koulouri","doi":"10.1101/2024.08.05.606582","DOIUrl":null,"url":null,"abstract":"<strong>Objective</strong> Unknown conductivities of the head tissues, particularly the skull, is a major factor of uncertainty in electroencephalography (EEG) source imaging. Here, we develop a personalized skull conductivity framework aiming to improve the head models used in the EEG source imaging and to reduce localization errors.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal electrical impedance tomography and electroencephalography imaging: Does higher skull conductivity resolution in EIT imaging improve accuracy of EEG source localization?\",\"authors\":\"Ville Rimpiläinen, Alexandra Koulouri\",\"doi\":\"10.1101/2024.08.05.606582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Objective</strong> Unknown conductivities of the head tissues, particularly the skull, is a major factor of uncertainty in electroencephalography (EEG) source imaging. Here, we develop a personalized skull conductivity framework aiming to improve the head models used in the EEG source imaging and to reduce localization errors.\",\"PeriodicalId\":501308,\"journal\":{\"name\":\"bioRxiv - Bioengineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.05.606582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.05.606582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multimodal electrical impedance tomography and electroencephalography imaging: Does higher skull conductivity resolution in EIT imaging improve accuracy of EEG source localization?
Objective Unknown conductivities of the head tissues, particularly the skull, is a major factor of uncertainty in electroencephalography (EEG) source imaging. Here, we develop a personalized skull conductivity framework aiming to improve the head models used in the EEG source imaging and to reduce localization errors.