追踪子宫内膜异位症:将深度表型、基于单细胞的子宫内膜差异与人工智能结合起来,进行疾病病理分析和预测

Lea Duempelmann, Shaoline Sheppard, Angelo Duo, Jitka Skrabalova, Brett McKinnon, Thomas Andrieu, Dennis Goehlsdorf, Sukalp Muzumdar, Cinzia Donato, Ryan Lusby, Wiebke Solass, Hans Bosmuller, Peter Nestorov, Michael Mueller
{"title":"追踪子宫内膜异位症:将深度表型、基于单细胞的子宫内膜差异与人工智能结合起来,进行疾病病理分析和预测","authors":"Lea Duempelmann, Shaoline Sheppard, Angelo Duo, Jitka Skrabalova, Brett McKinnon, Thomas Andrieu, Dennis Goehlsdorf, Sukalp Muzumdar, Cinzia Donato, Ryan Lusby, Wiebke Solass, Hans Bosmuller, Peter Nestorov, Michael Mueller","doi":"10.1101/2024.08.09.606959","DOIUrl":null,"url":null,"abstract":"Endometriosis, affecting 1 in 9 women, presents treatment and diagnostic challenges. To address these issues, we generated the biggest single-cell atlas of endometrial tissue to date, comprising 466,371 cells from 35 endometriosis and 25 non-endometriosis patients without exogenous hormonal treatment. Detailed analysis reveals significant gene expression changes and altered receptor-ligand interactions present in the endometrium of endometriosis patients, including increased inflammation, adhesion, proliferation, cell survival, and angiogenesis in various cell types. These alterations may enhance endometriosis lesion formation and offer novel therapeutic targets. Using ScaiVision, we developed neural network models predicting endometriosis of varying disease severity (median AUC = 0.83), including an 11-gene signature-based model (median AUC = 0.83) for hypothesis-generation without external validation. In conclusion, our findings illuminate numerous pathway and ligand-receptor changes in the endometrium of endometriosis patients, offering insights into pathophysiology, targets for novel treatments, and diagnostic models for enhanced outcomes in endometriosis management.","PeriodicalId":501108,"journal":{"name":"bioRxiv - Molecular Biology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracing Endometriosis: Coupling deeply phenotyped, single-cell based Endometrial Differences and AI for disease pathology and prediction\",\"authors\":\"Lea Duempelmann, Shaoline Sheppard, Angelo Duo, Jitka Skrabalova, Brett McKinnon, Thomas Andrieu, Dennis Goehlsdorf, Sukalp Muzumdar, Cinzia Donato, Ryan Lusby, Wiebke Solass, Hans Bosmuller, Peter Nestorov, Michael Mueller\",\"doi\":\"10.1101/2024.08.09.606959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endometriosis, affecting 1 in 9 women, presents treatment and diagnostic challenges. To address these issues, we generated the biggest single-cell atlas of endometrial tissue to date, comprising 466,371 cells from 35 endometriosis and 25 non-endometriosis patients without exogenous hormonal treatment. Detailed analysis reveals significant gene expression changes and altered receptor-ligand interactions present in the endometrium of endometriosis patients, including increased inflammation, adhesion, proliferation, cell survival, and angiogenesis in various cell types. These alterations may enhance endometriosis lesion formation and offer novel therapeutic targets. Using ScaiVision, we developed neural network models predicting endometriosis of varying disease severity (median AUC = 0.83), including an 11-gene signature-based model (median AUC = 0.83) for hypothesis-generation without external validation. In conclusion, our findings illuminate numerous pathway and ligand-receptor changes in the endometrium of endometriosis patients, offering insights into pathophysiology, targets for novel treatments, and diagnostic models for enhanced outcomes in endometriosis management.\",\"PeriodicalId\":501108,\"journal\":{\"name\":\"bioRxiv - Molecular Biology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.09.606959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.606959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每 9 名妇女中就有 1 人患有子宫内膜异位症,这给治疗和诊断带来了挑战。为了解决这些问题,我们制作了迄今为止最大的子宫内膜组织单细胞图谱,包括来自 35 名子宫内膜异位症患者和 25 名未接受外源性激素治疗的非子宫内膜异位症患者的 466,371 个细胞。详细分析显示,子宫内膜异位症患者的子宫内膜存在明显的基因表达变化和受体-配体相互作用改变,包括各种细胞类型的炎症、粘附、增殖、细胞存活和血管生成增加。这些改变可能会促进子宫内膜异位症病灶的形成,并提供了新的治疗靶点。利用 ScaiVision,我们开发了预测不同疾病严重程度的子宫内膜异位症的神经网络模型(中位数 AUC = 0.83),包括一个基于 11 个基因特征的模型(中位数 AUC = 0.83),用于无需外部验证的假设生成。总之,我们的研究结果揭示了子宫内膜异位症患者子宫内膜中许多通路和配体受体的变化,为病理生理学、新型治疗目标和诊断模型提供了见解,从而提高了子宫内膜异位症的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracing Endometriosis: Coupling deeply phenotyped, single-cell based Endometrial Differences and AI for disease pathology and prediction
Endometriosis, affecting 1 in 9 women, presents treatment and diagnostic challenges. To address these issues, we generated the biggest single-cell atlas of endometrial tissue to date, comprising 466,371 cells from 35 endometriosis and 25 non-endometriosis patients without exogenous hormonal treatment. Detailed analysis reveals significant gene expression changes and altered receptor-ligand interactions present in the endometrium of endometriosis patients, including increased inflammation, adhesion, proliferation, cell survival, and angiogenesis in various cell types. These alterations may enhance endometriosis lesion formation and offer novel therapeutic targets. Using ScaiVision, we developed neural network models predicting endometriosis of varying disease severity (median AUC = 0.83), including an 11-gene signature-based model (median AUC = 0.83) for hypothesis-generation without external validation. In conclusion, our findings illuminate numerous pathway and ligand-receptor changes in the endometrium of endometriosis patients, offering insights into pathophysiology, targets for novel treatments, and diagnostic models for enhanced outcomes in endometriosis management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信