罗杰斯-拉马努扬类等式的一般化

Li-Jun Hao, Xueya Kuai, Lan Xia
{"title":"罗杰斯-拉马努扬类等式的一般化","authors":"Li-Jun Hao, Xueya Kuai, Lan Xia","doi":"10.1007/s11139-024-00918-2","DOIUrl":null,"url":null,"abstract":"<p>Recently the integral method was widely used to prove some Nahm problems. In the present paper we apply this method and the three-term transformation formula for <span>\\({}_2\\phi _1\\)</span> series to establish some multi-sum Rogers-Ramanujan type identities with parameters. As special cases, we derive known Rogers-Ramanujan type identities, also find some new identities.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizations of Rogers–Ramanujan type identities\",\"authors\":\"Li-Jun Hao, Xueya Kuai, Lan Xia\",\"doi\":\"10.1007/s11139-024-00918-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently the integral method was widely used to prove some Nahm problems. In the present paper we apply this method and the three-term transformation formula for <span>\\\\({}_2\\\\phi _1\\\\)</span> series to establish some multi-sum Rogers-Ramanujan type identities with parameters. As special cases, we derive known Rogers-Ramanujan type identities, also find some new identities.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00918-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00918-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,积分法被广泛用于证明一些纳姆问题。在本文中,我们应用这种方法和 \({}_2\phi _1\)数列的三项变换公式建立了一些带参数的多和罗杰斯-拉玛努扬类型的等式。作为特例,我们推导出了已知的罗杰斯-拉马努扬型等式,也发现了一些新的等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizations of Rogers–Ramanujan type identities

Recently the integral method was widely used to prove some Nahm problems. In the present paper we apply this method and the three-term transformation formula for \({}_2\phi _1\) series to establish some multi-sum Rogers-Ramanujan type identities with parameters. As special cases, we derive known Rogers-Ramanujan type identities, also find some new identities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信